Regression Assumptions and Diagnostics

Max Turgeon

Department of Statistics, University of Manitoba

- Understand how regression relates to statistical inference.
- Recognize the relative importance of regression assumptions.
- Be able to assess evidence that an assumption is likely not met, and how to refine a regression model accordingly.

Gelman, Hill and Vehtari (2020) describe the three main challenges of statistical inference:

- 1. Generalizing from *sample* to *population*.
- 2. Generalizing from *treatment* to *control* group.
- 3. Generalizing from observed *measurements* to the underlying *constructs of interest.*

- **Regression** allows us to study how *average* values of an *outcome* variable vary across individuals. Each individual is defined by a set of *covariates*.
- Applications:
 - Prediction
 - Exploring associations
 - Adjusting for confounders
 - Causal inference

- 1. Model building
- 2. Model fitting
- 3. Understanding the fit
- 4. Criticism

Linear Regression

Recall: Linear model

• Y is an outcome variable, X_1, \ldots, X_p are covariates.

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \text{error.}$$

- Here, error is a random variable with mean 0 and variance σ^2 , so we can also write

$$E(Y \mid X_1, \dots, X_p) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p.$$

• The coefficients β_i represent comparisons of **means** for different values of the covariates (i.e. for different individuals).

Gelman, Hill and Vehtari (2020) list the assumptions of linear regression **in decreasing order of importance**:

- 1. Validity (with respect to the research question).
- 2. Representativeness (of the data with respect to the population).
- 3. Additivity and linearity.
- 4. Independence of errors.
- 5. Equal variance of errors.
- 6. Normality of errors.

Validity and Representativeness i

- The most important assumptions of linear regression are **non-mathematical**.
 - They are entirely based on domain knowledge
- Validity
 - Outcome measure should reflect question of interest
 - Relevant predictors/risk factors should be included
 - Model should generalize to patients to which results will be applied
- Representativeness
 - Data can be used to make inference about a larger population.
 - Including more covariates into model can help bridge the "representativeness" gap between data and population.

- How to fix this? The solution is often to change the model.
 - Validity: Measurement error models.
 - Representativeness: IPT weights, selection models.
 - When all else fails, you may have to narrow the scope of your research question (e.g. more descriptive than causal).

Additivity and linearity

• Main mathematical assumption:

$$E(Y \mid X_1, \dots, X_p) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p.$$

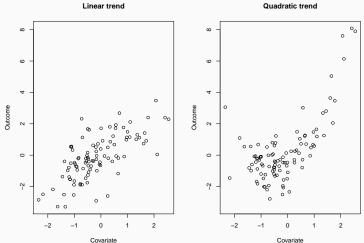
- Or in English:
 - Changes in the conditional mean of Y should be additive and linear.
- Note: Conditional mean = on average
 - Life is probably nonlinear and non-additive...
 - But it can still be a good approximation of the average

- 1. For **simple** linear regression (i.e. only one covariate), plot outcome against covariate.
- 2. Plot outcome against fitted values.
- 3. Plot residuals against fitted values and/or covariates.

Note: It is not recommended to plot outcome against residuals.

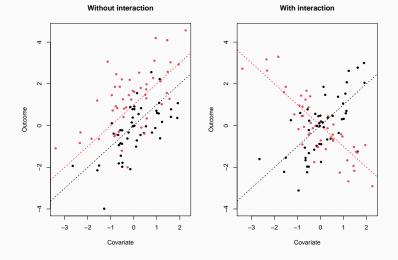
- This is the simplest case, because we can actually *visualize the relationship.*
- But it *only* works with a single covariate.
 - Or two, if one is categorical
- We are looking for evidence that we could fit a line through point cloud.
 - Or perhaps we need to fit a quadratic term, etc.

Outcome vs Covariate ii



Quadratic trend

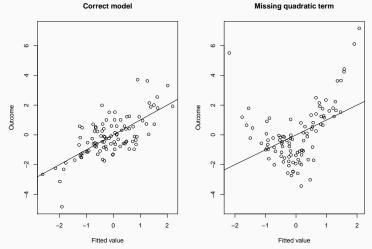
Outcome vs Covariate iii



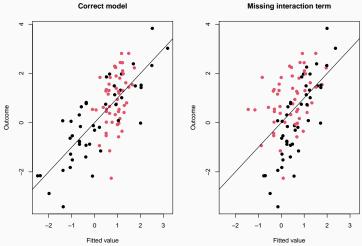
Outcome vs Fitted values i

- *Recall*: the fitted values are *estimates* of the conditional mean of the outcome
 - Outcome variable should be randomly distributed around its conditional mean.
- Therefore, we expect outcome vs. fitted should follow diagonal.
 - Otherwise, part of the variation is not explained (e.g. because of missing covariate).

Outcome vs Fitted values ii



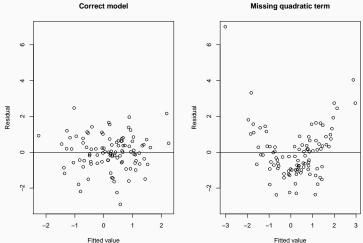
Outcome vs Fitted values iii



Missing interaction term

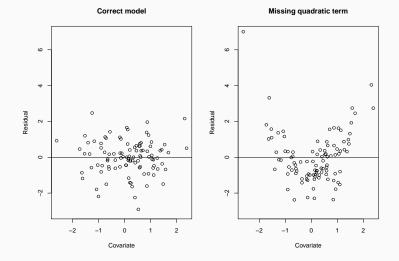
- *Recall*: the residuals are the difference between the outcome and the fitted values.
 - They should be independent of covariate and fitted values
- Therefore, we expect residuals vs fitted values/covariate to follow a horizontal line.
 - Otherwise, part of the variation is not explained (e.g. because of missing covariate).

Residuals vs Fitted values/Covariate ii



Missing quadratic term

Residuals vs Fitted values/Covariate iii



21

- Transform outcome variable.
 - Eg. Using logarithms, multiplicative effects become additive.
 - Note: It changes interpretation of regression coefficients.
- Transform covariates.
 - Note: It changes interpretation of regression coefficients.
- Add quadratic term or splines to model nonlinear trends.
 - Note: If the same variable appears in multiple terms (e.g. linear and quadratic term), you can no longer vary one while keeping the other fixed.
- Add interaction term.
 - Note: It changes interpretation of regression coefficients.

- We will use data on Forced Expiratory Volume (FEV) in children age 3 to 19 from East Boston recorded during the 1970s.
 - Can be downloaded from http:

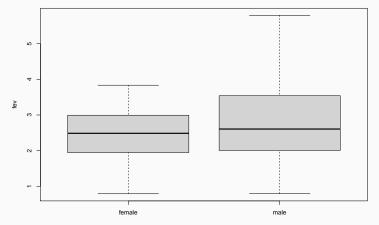
//biostat.mc.vanderbilt.edu/wiki/Main/DataSets

- The dataset contains information on age, height, sex, and smoking status.
- Outcome: FEV

```
# Import dataset into R
data_fev <- read.csv("FEV.csv")</pre>
```

Explore data
boxplot(fev ~ sex, data = data_fev)

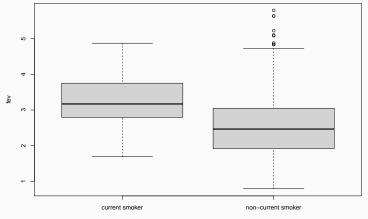
Example iii



sex

boxplot(fev ~ smoke, data = data_fev)

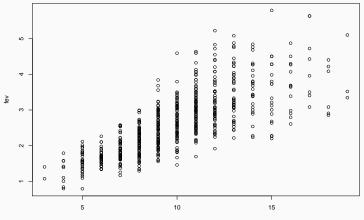
Example v



smoke

Note: Use 'with' instead of 'attach' with(data_fev, plot(age, fev))

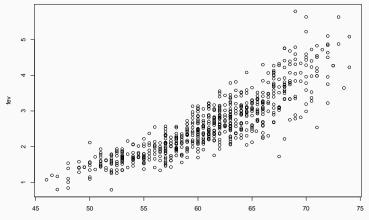
Example vii



age

with(data_fev, plot(height, fev))

Example ix

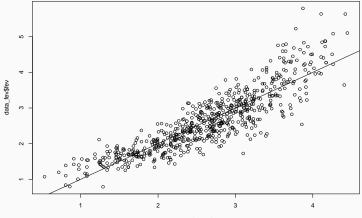


height

term	estimate	std.error	statistic	p.value
(Intercept)	-4.54	0.23	-19.58	0.00
smokenon-current smoker	0.09	0.06	1.47	0.14
sexmale	0.16	0.03	4.73	0.00
age	0.07	0.01	6.90	0.00
height	0.10	0.00	21.90	0.00

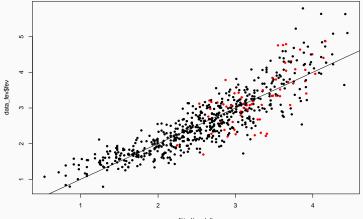
```
# Plot outcome vs fitted values
plot(fitted(model), data_fev$fev)
# Add diagonal line
abline(a = 0, b = 1)
```

Example xiii



fitted(model)

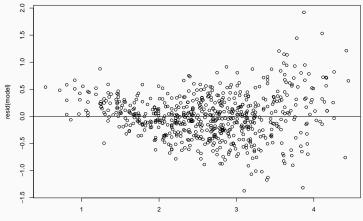
Example xv



fitted(model)

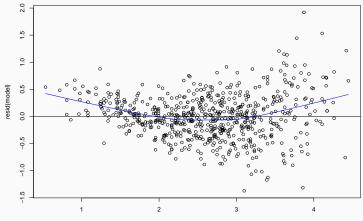
```
# Plot residuals vs fitted values
plot(fitted(model), resid(model))
# Add horizontal line
abline(h = 0)
```

Example xvii



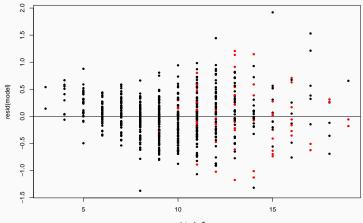
fitted(model)

Example xix



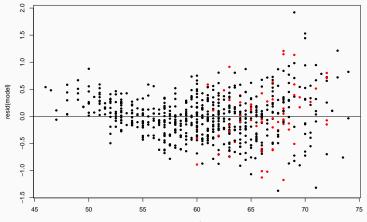
fitted(model)

Example xxi



data_fev\$age

Example xxiii



data_fev\$height

Interpretation of coefficients i

- Transformations change the interpretation of the coefficients.
- Let's say we have a linear regression model where the outcome is earnings (in 1000\$) and the covariates are height (in inches) and sex:

Earnings $\sim -26 + 0.6$ Height + 10.6Male.

- *Interpretation*: On average, a person one inch taller than another person of the same sex earns 600\$ more.
- Alternative model: the outcome is earnings (in 1000\$) and the covariates are **logarithm** of height and sex:

Earnings $\sim -162 + 42.7$ logHeight + 10.7Male.

Interpretation of coefficients ii

• Interpretation: We need to do a bit of algebra.

 $E(\text{Earnings} \mid \text{Height} = x) = -162 + 42.7 \log(x)$ $E(\text{Earnings} \mid \text{Height} = x + 1) = -162 + 42.7 \log(x + 1)$

• Therefore, the difference in average earnings when a person is one inch taller is given by

$$(-162 + 42.7 \log(x+1)) - (-162 + 42.7 \log(x))$$

= 42.7 log $\left(\frac{x+1}{x}\right)$.

• In particular, it depends on x, the baseline height!

Interpretation of coefficients iii

- This is why we instead use *multiplicative* changes when using covariates on the logarithmic scale.
- Let's compare two people, with one 10% taller than the other one:

 $E(\text{Earnings} \mid \text{Height} = x) = -162 + 42.7 \log(x)$ $E(\text{Earnings} \mid \text{Height} = 1.1x) = -162 + 42.7 \log(1.1x)$

• Therefore, the difference in average earnings when a person is 10% taller is about 4070\$:

$$(-162 + 42.7 \log(1.1x)) - (-162 + 42.7 \log(x))$$

= 42.7 log $\left(\frac{1.1x}{x}\right)$ = 42.7 log (1.1) \approx 4070\$.

Interpretation of coefficients iv

• Alternative model: the outcome is earnings (on the **log scale**) and the covariates are height and sex:

 $\log - \text{Earnings} \sim 8.0 + 0.02 \text{Height} + 0.4 \text{Male.}$

- *Interpretation*: On average, a person one inch taller than another person of the same sex earns 0.02 log-dollars more.
- We would like to interpret this on the original scale, but the logarithm of the average is **not** equal to the average of the values on the logarithmic scale.
- However, if log-earnings are approximately symmetric, we know that mean = median.

Interpretation of coefficients v

- And the median is preserved under the logarithm!
- *Remember*: Difference on the log scale is a ratio on the original scale.
- Interpretation 2: Since $\exp(0.02) = 1.02$, the median income of a person one inch taller than another person of the same sex is 2% higher.

Independence of errors

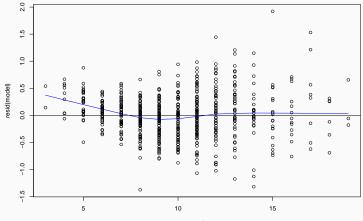
- Independence of the errors is important when performing hypothesis testing and calculating confidence intervals.
 - With dependent data, tests are too optimistic and CIs are too narrow.
- On the other hand, the effect on the coefficient estimates should be minimal.
- When is it not met? The main source of dependent data is *clustered* or grouped (e.g. patients in a hospital, weather sensors in a province).
- How to fix this? Use mixed models or generalized estimating equations. Or add clustering variable into the model.

- Dependence between the errors is usually driven by time dependence (i.e. order in which the observations were taken), spatial dependence, or clustering.
- **Diagnostic**: Plot residuals against any of these variables. Departure from a horizontal trend is evidence of correlation.
 - *Tip*: Use boxplots when clustering variable is discrete.

Diagnostic ii

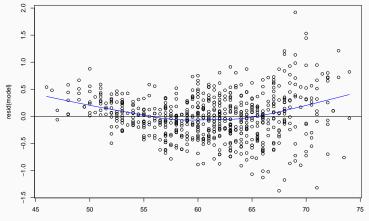
Without time trend With time trend ო с a ô ~ 00 0 -0 0 00 00 Residuals Residuals C õ 0 。 8 0 00 o T 0 Ϋ́ Ϋ́ Time Time

Example ii



data_fev\$age

Example iv



data_fev\$height

Equal variance of errors i

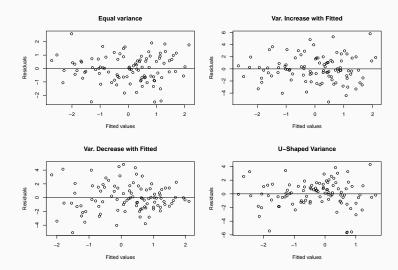
- Equal variance (aka homoscedasticity) is actually a fairly unimportant assumption.
 - If the goal of the model is prediction, accounting for unequal variance will improve accuracy.
- Unequal variance (aka heteroscedasticity) does not affect the frequentist properties of the inference.
 - Hypothesis tests are valid, and so are the confidence intervals.
- However, accounting for unequal variance can lead to more efficient inference (i.e. lower variance, narrower CIs).

Equal variance of errors ii

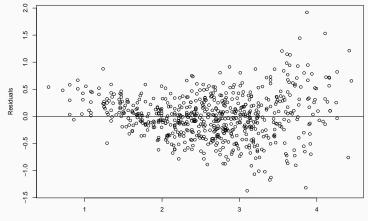
- When is it not met? Unequal variance could simply be a feature of the data, and it is common to have the variance depend on covariates (e.g. higher income patients have more variability in their diet).
- How to fix this? Weighted linear regression or Eicker–Huber–White standard errors.

- One way to see evidence of unequal variance is to plot the *residuals* against the *fitted values*.
 - Equal variance means residuals should randomly fall within a band around the horizontal line y = 0.
- If there is evidence of heteroscedasticity, you can try to find the source by plotting *residuals* against individual *covariates*.

Diagnostic ii



Example ii



Fitted values

Example iii

- There is evidence of heteroscedasticity.
- Let's look at the Eicker–Huber–White standard errors.
 - Note: For Stata, use the option robust of the regress procedure.

term	estimate	std.error
(Intercept)	-4.544	0.232
smokenon-current smoker	0.087	0.059
sexmale	0.157	0.033
age	0.066	0.009
height	0.104	0.005

Example v

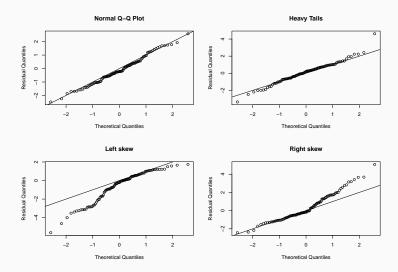
-4.544	0.258
0.087	0.078
0.157	0.032
0.066	0.010
0.104	0.005
	0.087 0.157 0.066

	Estim.	Std. Cl	Robust Cl
(Intercept)	-4.544	(-5, -4.089)	(-5.05, -4.039)
smokenon-current smoker	0.087	(-0.029, 0.204)	(-0.065, 0.24)
sexmale	0.157	(0.092, 0.222)	(0.094, 0.22)
age	0.066	(0.047, 0.084)	(0.045, 0.086)
height	0.104	(0.095, 0.114)	(0.094, 0.114)

- Normality of the errors is the least important assumption.
 - Frankly, its purpose is to make the math easier.
- Non-normality is only important for prediction.
 - It does not affect inference.
- When is it not met? Pretty much all the time!
- How to fix this? Use prediction intervals based on more appropriate distribution (e.g. *t* distribution).

- One way to diagnose non-normality is to look at QQ-plots.
 - We know the mean of the residuals is zero, and we can estimate its variance $\widehat{\sigma^2}.$
 - We can compare the quantiles of the residuals with those of a normal distribution $N(0,\widehat{\sigma^2}).$
- It is not recommended to test the hypothesis of normality.

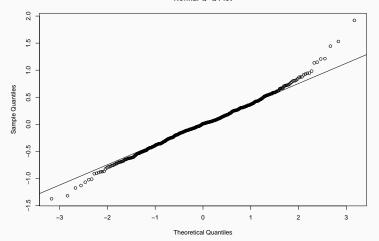
Diagnostic ii



Evidence of heavier tails qqnorm(resid(model)) qqline(resid(model))

Example ii

Normal Q–Q Plot



Other considerations i

- R^2 measures how much variation in the outcome variable is explained by the model.
 - What constitutes a good \mathbb{R}^2 is highly dependent on the problem.
 - Not a good metric for assessing model fit.
 - Never use for model selection (it is inherently biased towards complex models)
- High correlation between covariates can lead to large standard errors and wide confidence intervals.
 - This is known as *multicollinearity*.
 - It is measured using *kappa* (aka condition number) or variance inflation factor.

Other considerations ii

- It can be fixed by removing/combining/transforming some covariates.
- There is plethora of *influence measures* (e.g. Leverage values, Cook's distance).
 - These measures can be helpful to uncover outliers.
 - Understanding why an observation is an outlier can be helpful in refining your model (especially if "being an outlier" is correlated with other variables).
 - However, none of these measures are fail-proof; they are helpful diagnostics.

R2 values
summary(model)\$r.squared

[1] 0.7753614

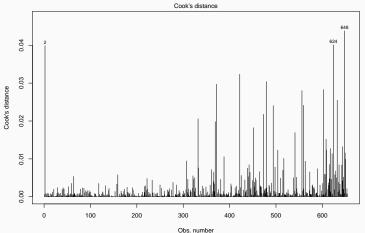
summary(model)\$adj.r.squared

[1] 0.7739769

```
# Evaluate Multicollinearity----
# Variance Inflation Factors
car::vif(model)
```

smoke sex age height
1.209564 1.060228 3.019010 2.829728

Example iv

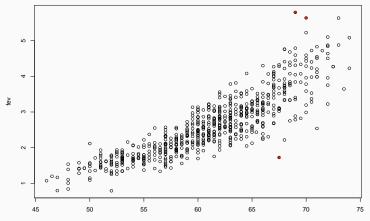


Obs. number Im(fev ~ smoke + sex + age + height)

```
# Look at raw data
data_fev[c(2, 624, 648),]
```

##		id	age	fev	height	sex		smoke
##	2	451	8	1.724	67.5	female	non-current	smoker
##	624	25941	15	5.793	69.0	male	non-current	smoker
##	648	71141	17	5.638	70.0	male	non-current	smoker

Example vii



height

Discussion and Summary i

- We found evidence that additivity/linearity is not met.
 - Residual vs fitted plot, but also residual vs height.
 - Given our data visualizations, it is likely that relationship between FEV and height is nonlinear.
 - We could address this using a logarithmic transformation or splines.
- We found evidence of heteroscedasticity.
 - Residual vs fitted values; higher variance with larger fitted values.
 - We computed robust standard errors but saw no major change in our inference.

Discussion and Summary ii

- We found evidence of a few outliers.
 - But after closer look at the raw data, they do not seem like implausible values.
- Model checking is an *iterative process*.
- It is also more an art than a science.
 - In particular, it is easier to find evidence *against* than evidence *for*.
- Diagnostic plots are preferable to hypothesis tests.

Logistic Regression

• Y is a binary outcome variable (i.e. Y = 0 or Y = 1).

$$logit (E(Y \mid X_1, \dots, X_p)) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p.$$

- Recall: logit(t) = log(t/(1-t)).
- The coefficients β_i represent comparisons of **log odds** for different values of the covariates (i.e. for different individuals).

Logistic regression has less assumptions than linear regression.

- 1. Validity (with respect to the research question).
- 2. Representativeness (of the data with respect to the population).
- 3. Additivity and linearity.
- 4. (Conditional) Independence of the outcomes.

Note: There is only one possible distribution for binary outcomes, i.e. Bernoulli. As a consequence, we **always** have heteroscedasticity.

Diagnostic plots i

- Diagnostic plots are trickier with logistic regression because the data is *discrete*.
 - And therefore the *residuals* are also discrete.
- One useful solution: *bin the outcomes/residuals*.
 - Bin observations with similar fitted values.
 - Take the average of residuals and fitted values.
 - Plot the averages against one another.
- As residual plots in linear regression, we are looking for random pattern around horizontal line.
- **Note**: There is a balance between enough bins to see patterns and enough observations by bins to have stable averages.

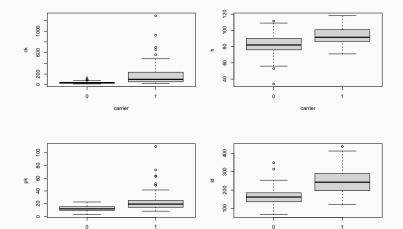
- We will use data on Duchenne Muscular Dystrophy (DMD).
 - Can be downloaded from http: //biostat.mc.vanderbilt.edu/wiki/Main/DataSets
- Goal of the study was to develop a screening program for female relatives of boys with DMD.
- Outcome: Carrier status
- Covariates: serum markers: creatine kinase (ck), hemopexin
 (h), pyruvate kinase (pk) and lactate dehydroginase (ld).

Example ii

```
# Import dataset into R
data_dmd <- read.csv("DMD.csv")
# Remove rows with missing values
data_dmd <- na.omit(data_dmd)</pre>
```

```
# Explore data
par(mfrow = c(2, 2))
boxplot(ck ~ carrier, data = data_dmd)
boxplot(h ~ carrier, data = data_dmd)
boxplot(pk ~ carrier, data = data_dmd)
boxplot(ld ~ carrier, data = data_dmd)
```

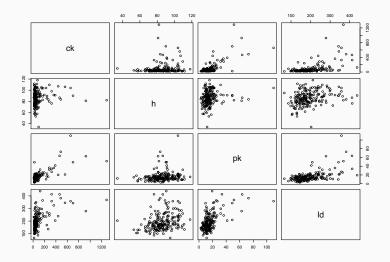
Example iii



carrier

```
# Pairs plot----
# Useful for pairwise comparisons
with(data_dmd, pairs(cbind(ck, h, pk, ld)))
```

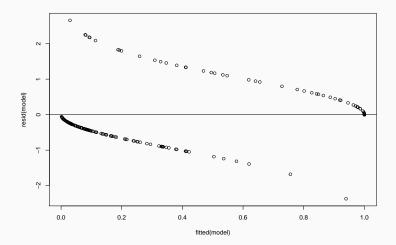
Example v



##		2.5 %	97.5 %
##	(Intercept)	-20.76823776	-10.43024757
##	ck	0.04058575	0.08519017
##	h	0.07813791	0.17837069

Plot residuals and probabilities (no binning) plot(fitted(model), resid(model)) abline(h = 0)

Example viii

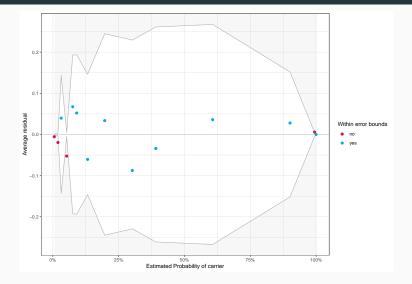


```
# We will use the 'performance' package
library(performance)
```

By default: residuals vs fitted probs
sqrt(n) bins (~14 bins)
binned_residuals(model)

Warning: Probably bad model fit. Only about
71% of the residuals are inside the error bounds.

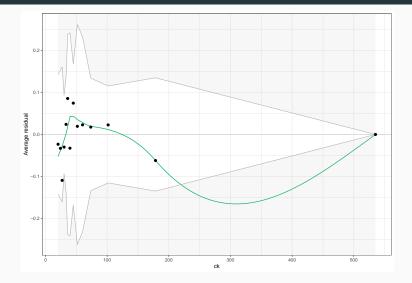
Example x



Use 'term' to plot against covariate binned_residuals(model, term = "ck")

Ok: About 100% of the residuals are inside the error bounds.

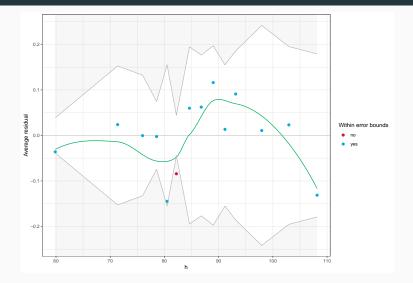
Example xii



binned_residuals(model, term = "h")

Warning: About 93% of the residuals are inside the error bounds (~95% or higher would be good).

Example xiv



- We have evidence of poor model fit (from binned residuals vs fitted probabilities).
 - But the evidence is weak.
- It may be driven by non-linearity of the effect of **h** on the log-odds.
 - Or it could be driven by a missing covariate.

Other considerations i

- **Calibration**: Are the estimated probabilities close to empirical probabilities?
 - Hosmer-Lemeshow, Brier score
- **Discrimination**: Are cases more likely to be given large scores (or large probabilities) than non-cases?
 - Area under the ROC curve (AUC), Percentage of Correct Predictions (PCP)
 - **Note**: the AUC is not a very sensitive measure of model performance.

Other considerations ii

performance_hosmer(model)

```
## # Hosmer-Lemeshow Goodness-of-Fit Test
##
## Chi-squared: 3.305
## df: 8
## p-value: 0.914
# Quadratic score = Brier score
```

performance_score(model)

Other considerations iii

Proper Scoring Rules

##

logarithmic: -Inf

- ## quadratic: 8.1783
- ## spherical: 0.0280

performance_roc(model)

AUC: 92.73%

performance_pcp(model)

```
## # Percentage of Correct Predictions from
Logistic Regression Model
##
## Full model: 81.53% [76.07% - 86.99%]
## Null model: 54.78% [47.78% - 61.79%]
##
## # Likelihood-Ratio-Test
##
## Chi-squared: 133.685
## p-value: 0.000
```

- Gelman, A., Hill, J., & Vehtari, A. (2020). *Regression and other stories*. Cambridge University Press.
- Harrell Jr, F. E. (2015). Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Springer.
- Harrell Jr, F. E. (2019). *Biostatistics for Biomedical Research*. Course notes available online:

```
http://hbiostat.org/bbr/.
```