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Introduction



Motivation

• Jane Doe, 35 yo, received stem-cell transplant for acute

myeloid leukemia

• “What is my 5-year risk of relapse?”

• P(Time to event < 5,Relapse | Covariates)

• “What about 1-year? 2-year?”

• A smooth absolute risk curve.
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Current methods

• Proportional hazards hypothesis

• Disease etiology

• E.g. Cox regression.

• Proportional subdistribution hypothesis

• Absolute risk

• E.g. Fine-Gray model.
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Summary

• We propose a simple approach to modeling directly the
cause-specific hazards using (smooth) parametric families.

• Our approach relies on Hanley & Miettinen’s case-base

sampling method [1].

• Smooth hazards give rise to smooth absolute risk curves.

• Our approach allows for a symmetric treatment of all time

variables.

• Finally, it also allows for hypothesis testing and variable

selection.

This method is currently available in the R package casebase on

CRAN.

See also our website: http://sahirbhatnagar.com/casebase/
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Case-base sampling
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Case-base sampling

• The unit of analysis is a person-moment.

• Case-base sampling reduces the model fitting to a familiar
multinomial regression.

• The sampling process is taken into account using an offset

term.

• By sampling a large base series, the information loss

eventually becomes negligible.

• This framework can easily be used with time-varying

covariates (e.g. time-varying exposure).
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Theoretical details



Assumptions

We make the following assumptions:

• For each event type j = 1, . . . ,m, a non-homogeneous Poisson
process with hazard λj(t).

• At most one event type can occur.

• Non-informative censoring.

• Case-base sampling occurs following a non-homogenous

Poisson process with hazard ρ(t).
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Likelihood

Each person-moment’s contribution to the likelihood is of the form:

m∏
j=1

λj(t)dNj (t)

ρ(t) +
∑m

j=1 λj(t)
.

This is reminiscent of a multinomial likelihood, with offset

log(1/ρ(t)).
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Likelihood

Main Theorem

The likelihood defined above has mean zero and is asymptotically

normal.

Implication: All the GLM machinery (e.g. deviance tests,

information criteria, regularization) is available to us.
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Parametric families

We can fit any model of the following form:

log λ(t;α, β) = g(t;α) + βX .

Different choices of the function g leads to familiar parametric

families:

• Exponential: g is constant.

• Gompertz: g(t;α) = αt.

• Weibull: g(t;α) = α log t.
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Simulation study



Simulation scenario

• We simulate 1000 datasets from an exponential and a

Gompertz family.

• Binary covariate

• Random censoring

• We compare case-base with a correctly specified family,

case-base with splines, and Cox regression.
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Simulation results
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Data analysis



Data

Variable description Statistical summary

Sex M=Male (87)

F=Female (72)

Disease ALL (59)

AML (100)

Phase CR1 (43)

CR2 (40)

CR3 (10)

Relapse (65)

Type of transplant BM+PB (15)

PB (144)

Age of patient (years) 16–62

33 (IQR 19.5)

Failure time (months) 0.13–131.77

20.28 (30.78)

Status indicator 0=censored (40)

1=relapse (49)

2=competing event (70) 14/19
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Model fit

Case-base Cox regression

Variable Hazard ratio 95% CI Hazard ratio 95% CI

Sex 0.64 (0.35, 1.20) 0.75 (0.42, 1.35)

Disease 0.54 (0.27, 1.07) 0.63 (0.34, 1.19)

Phase CR2 1.00 (0.37, 2.70) 0.95 (0.36, 2.51)

Phase CR3 1.25 (0.24, 6.53) 1.38 (0.28, 6.76 )

Phase Relapse 4.71 (2.11, 10.54) 4.06 (1.85, 8.92)

Source 1.89 (0.40, 8.99) 1.49 (0.32, 6.85)

Age 0.99 (0.97, 1.02) 0.99 (0.97, 1.02)

16/19



Discussion



Discussion

• We proposed a simple and flexible way of directly modeling
the hazard function, using multinomial regression.

• This leads to smooth estimates of the absolute risks.

• We are explicitely modeling time.

• We can test the significance of covariates.
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Questions or comments?

For more details, visit

http://sahirbhatnagar.com/casebase/
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