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e Jane Doe, 35 yo, received stem-cell transplant for acute
myeloid leukemia

e “What is my 5-year risk of relapse?”
e P(Time to event < 5, Relapse | Covariates)
e “What about 1-year? 2-year?”

e A smooth absolute risk curve.
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Current methods

e Proportional hazards hypothesis
e Disease etiology
e E.g. Cox regression.
e Proportional subdistribution hypothesis

e Absolute risk
e E.g. Fine-Gray model.
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e We propose a simple approach to modeling directly the

cause-specific hazards using (smooth) parametric families.
e Our approach relies on Hanley & Miettinen's case-base
sampling method [1].

e Smooth hazards give rise to smooth absolute risk curves.

e Qur approach allows for a symmetric treatment of all time
variables.

e Finally, it also allows for hypothesis testing and variable
selection.

This method is currently available in the R package casebase on
CRAN.

See also our website: http://sahirbhatnagar.com/casebase/
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Case-base sampling

e The unit of analysis is a person-moment.

o Case-base sampling reduces the model fitting to a familiar
multinomial regression.

e The sampling process is taken into account using an offset
term.

e By sampling a large base series, the information loss
eventually becomes negligible.

e This framework can easily be used with time-varying

covariates (e.g. time-varying exposure).
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We make the following assumptions:

e For each event type j = 1,..., m, a non-homogeneous Poisson
process with hazard \;(t).

e At most one event type can occur.
e Non-informative censoring.

e Case-base sampling occurs following a non-homogenous
Poisson process with hazard p(t).

8/19



Likelihood

Each person-moment'’s contribution to the likelihood is of the form:
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Likelihood

Each person-moment'’s contribution to the likelihood is of the form:

T AN
H p(t) + 37 Ai(t)

J=1

This is reminiscent of a multinomial likelihood, with offset

log(1/p(t))-
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Likelihood

Main Theorem
The likelihood defined above has mean zero and is asymptotically
normal.
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Likelihood

Main Theorem
The likelihood defined above has mean zero and is asymptotically
normal.

Implication: All the GLM machinery (e.g. deviance tests,
information criteria, regularization) is available to us.

10/19



Parametric families

11/19



Parametric families

We can fit any model of the following form:

log \(t; o, B) = g(t; @) + BX.

11/19



Parametric families

We can fit any model of the following form:

log \(t; o, B) = g(t; @) + BX.

Different choices of the function g leads to familiar parametric
families:

11/19



Parametric families

We can fit any model of the following form:

log \(t; o, B) = g(t; @) + BX.

Different choices of the function g leads to familiar parametric
families:

e Exponential: g is constant.

11/19



Parametric families

We can fit any model of the following form:

log \(t; o, B) = g(t; @) + BX.

Different choices of the function g leads to familiar parametric
families:

e Exponential: g is constant.

e Gompertz: g(t;a) = at.

11/19



Parametric families

We can fit any model of the following form:

log \(t; o, B) = g(t; @) + BX.

Different choices of the function g leads to familiar parametric
families:

e Exponential: g is constant.
e Gompertz: g(t;a) = at.
e Weibull: g(t;a) = alogt.
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Simulation scenario

e We simulate 1000 datasets from an exponential and a
Gompertz family.
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Simulation scenario

We simulate 1000 datasets from an exponential and a

Gompertz family.

Binary covariate

Random censoring

e We compare case-base with a correctly specified family,

case-base with splines, and Cox regression.
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Simulation results
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Data analysis




Variable description

Statistical summary

Sex

M=Male (87)
F=Female (72)

Disease

ALL (59)
AML (100)

Phase

CR1 (43)

CR2 (40)

CR3 (10)
Relapse (65)

Type of transplant

BM+PB (15)
PB (144)

Age of patient (years)

16-62
33 (IQR 19.5)

Failure time (months)

0.13-131.77
20.28 (30.78)

Status indicator

2=competing event (70)

O=censored (40)

1=relapse (49)
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Model fit

Case-base Cox regression

Variable Hazard ratio 95% ClI Hazard ratio 95% ClI

Sex 0.64 (0.35, 1.20) 0.75 (0.42, 1.35)
Disease 0.54 (0.27, 1.07) 0.63 (0.34, 1.19)
Phase CR2 1.00 (0.37, 2.70) 0.95 (0.36, 2.51)
Phase CR3 1.25 (0.24, 6.53) 1.38 (0.28, 6.76 )
Phase Relapse 4.71 (2.11, 10.54) 4.06 (1.85, 8.92)
Source 1.89 (0.40, 8.99) 1.49 (0.32, 6.85)
Age 0.99 (0.97, 1.02) 0.99 (0.97, 1.02)
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Discussion

e We proposed a simple and flexible way of directly modeling
the hazard function, using multinomial regression.

e This leads to smooth estimates of the absolute risks.
e We are explicitely modeling time.

e We can test the significance of covariates.
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Questions or comments?

For more details, visit
http://sahirbhatnagar.com/casebase/



	Introduction
	Case-base sampling
	Theoretical details
	Simulation study
	Data analysis
	Discussion

