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Motivating Example



Systemic Autoimmune Diseases

• Systemic Autoimmune diseases, e.g. Rheumatoid arthritis,

Lupus, Scleroderma, impact many systems at once.

• We want to study the association between DNA methylation

and these diseases

• To account for the complex biological architecture, we want

to measure the association at the genetic pathway level

• High-Dimensional Data

How can we efficiently compute valid p-values?
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High-dimensional inference



Double Wishart Problem

• Many multivariate methods involve maximising a Rayleigh

quotient:

R2(w) =
wTAw

wT (A + B)w
.

• This approach is equivalent to finding the largest root λ of a

double Wishart problem:

det (A− λ(A + B)) = 0.

3/21



Double Wishart Problem

Well-known examples of double Wishart problems:

• Multivariate Analysis of Variance (MANOVA);

• Canonical Correlation Analysis (CCA);

• Testing for independence of two multivariate samples;

• Testing for the equality of covariance matrices of two

independent samples from multivariate normal distributions;

In all the examples above, the largest root λ summarises the

strength of the association.
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Contributions

The main contribution:

1. I will provide an empirical estimate of the distribution of the

largest root of the determinantal equation. This estimate can

be used to compute valid p-values and perform

high-dimensional inference.

Two R packages implement this method: pcev and covequal

(both available on CRAN)
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Inference

There is evidence in the literature that the null distribution of the

largest root λ should be related to the Tracy-Widom distribution.

Theorem
(Johnstone 2008) Assume A ∼Wp(Σ,m) and B ∼Wp(Σ, n) are

independent, with Σ positive-definite and n ≤ p. As p,m, n→∞,

we have
logitλ− µ

σ

D−→ TW (1),

where TW (1) is the Tracy-Widom distribution of order 1, and µ, σ

are explicit functions of p,m, n.
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Inference

• However, Johnstone’s theorem requires an invertible matrix.

• The null distribution of λ is asymptotically equal to that of
the largest root of a scaled Wishart (Srivastava).

• The null distribution of the largest root of a Wishart is also

related to the Tracy-Widom distribution.

• More generally, random matrix theory suggests that the

Tracy-widom distribution is key in central-limit-like theorems

for random matrices.
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Empirical Estimate

We propose to obtain an empirical estimate as follows:

Estimate the null distribution

1. Perform a small number of permutations (∼ 50).

• The actual procedure is problem-specific.

2. For each permutation, compute the largest root statistic.

3. Fit a location-scale variant of the Tracy-Widom distribution.

Numerical investigations support this approach for

computing p-values. The main advantage over a traditional

permutation strategy is the computation time.
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Simulations



Distribution Estimation

• We generated 1000 pairs of Wishart variates A ∼Wp(Σ,m),
B ∼Wp(Σ, n) with m = 96 and n = 4 fixed

• MANOVA: this would correspond to four distinct populations

and a total sample size of 100

• We varied p = 500, 1000, 1500, 2000

• We looked at two different covariance structures: Σ = Ip, and

an exchangeable correlation structure with parameter ρ = 0.2.

• We looked at four different numbers of permutations for the

empirical estimator: K = 25, 50, 75, 100.

• We compared graphically the CDF estimated from the

empirical estimate with the true CDF
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Distribution Estimation
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P-value Comparison

We looked at the following high-dimensional simulation scenario:

• We fixed n = 100.

• We generated X ∼ Np(0, Ip) and Y ∼ Np(0,Σ), with

p = 200, 300, 400, 500.

• We selected an autocorrelation structure Σ:

Cov(Yi ,Yj) = ρ|i−j |, ρ = 0, 0.2

• We compared the empirical estimate with a permutation

procedure (250 permutations).

• Each simulation was repeated 100 times.
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P-value Comparison
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Data Analysis



Data

• DNA methylation measured with Illumina 450k on 28

cell-separated samples

• We focus on Monocytes only.

• 18 patients suffering from Rheumatoid arthritis, Lupus,

Scleroderma

• We group locations by biological KEGG pathways

• The number of genomic locations per pathway ranged from 39

to 21,640, with an average around 2000 dinucleotides.

• 134,941 CpG dinucleotides were successfully matched to one of

320 KEGG pathways

• On average, each locations appears in 4.5 pathways ⇒
effectively 70 independent hypothesis tests
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Results

Description P-value P-value (permutation)

Glutamatergic synapse 1.91× 10−4 7.00× 10−4

Ras signaling pathway 1.33× 10−3 1.40× 10−3

Circadian rhythm 1.52× 10−3 1.00× 10−4

Histidine metabolism 1.59× 10−3 3.00× 10−4

Pathogenic E. coli infection 1.65× 10−3 5.20× 10−3
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Results
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path:hsa00120—Glutamatergic synapse: Comparison of VIF

and univariate p-values for the most significant pathway.
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Conclusion

• Data summary is an important feature in data analysis, and

this is the objective of dimension reduction techniques.

• In a high-dimensional setting, estimation and inference are
more challenging

• Estimation: Truncated SVD

• Inference: Fitted location-scale Tracy-Widom

• Our approach is computationally simple.

• Everything presented today has been implemented in two R

packages.
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Demo



Principal Component of Explained Variance (PCEV)

• Provides an optimal strategy for selecting a low dimensional

summary of Y that can be used to test for association with

one or several covariates of interest.

• Goal: Find the linear combination (or component) that

maximises the proportion of variance explained by the

covariates
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PCEV: Statistical Model

Let Y be a multivariate outcome of dimension p and X , a vector

of covariates.

We assume a linear relationship:

Y = βTX + ε.

The total variance of the outcome can then be decomposed as

Var(Y) = Var(βTX ) + Var(ε)

= VM + VR .
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PCEV: Statistical Model

Decompose the total variance of Y into:

1. Variance explained by the covariates;

2. Residual variance.
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PCEV: Statistical Model

The PCEV framework seeks a linear combination wTY such that

the proportion of variance explained by X is maximised; this

proportion is defined as the following Rayleigh quotient:

R2(w) =
wTVMw

wT (VM + VR)w
.

A solution to this maximisation problem can be obtained through a

combination of Lagrange multipliers and linear algebra.

Key observation: R2(w) measures the strength of the association
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Questions or comments?

For more information and updates, visit

maxturgeon.ca.
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