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Introduction

• Modern genomics bring an abundance of high-dimensional,

correlated measurements Y.

• We are interested in describing the relationship between such

a Y and a set of covariates X .

• Our approach is to summarise this relationship using the

largest root λ of a double Wishart problem:

det (A− λ(A + B)) = 0.
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Double Wishart Problem

There are many well-known examples:

• Multivariate Analysis of Variance (MANOVA);

• Canonical Correlation Analysis (CCA);

• Testing for independence of two multivariate samples;

• Testing for the equality of covariance matrices of two

independent samples from multivariate normal distributions;

• Principal Component of Explained Variance (PCEV).
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Main contribution

In this work:

1. We explain how to solve the double Wishart problem in a

high-dimensional setting.

2. We provide a heuristic for assessing the significance of the

largest root of the determinantal equation.

In what follows, we illustrate this approach using PCEV, but it is

applicable to any double Wishart problem (e.g. CCA).
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Methods



PCEV: Statistical model

We assume a linear relationship:

Y = βTX + ε.

The total variance of the outcome can then be decomposed as

Var(Y) = Var(βTX ) + Var(ε)

= VM + VR .
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PCEV: Statistical model

The PCEV framework seeks a linear combination wTY such that

the proportion of variance explained by X is maximised; this

proportion is defined as the following Rayleigh quotient:

h(w) =
wTVMw

wT (VM + VR)w
.

For the corresponding Wishart problem, we have

A = VM ,B = VR .

We also have λ = maxw h(w).
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Singular Value Decomposition

From the theory of SVD, we know there exists an orthogonal

matrix T such that

D := TT (VR + VM)T

is diagonal.

When p > n, the diagonal matrix D is singular, with rank r < p.

Solution: Focus only on the nonzero diagonal elements.
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Reduced-Rank SVD

Let T̃ = T[r ]D
−1/2
[r ] . Therefore we get:

T̃T (VR + VM) T̃ = Ir .

Similarly, we can diagonalise T̃TVM T̃ via an orthogonal

transformation S :

ST
(
T̃TVM T̃

)
S = Λ.

The largest root λ of the double Wishart problem is the

largest element on the diagonal of Λ.

Note: the vector w maximising the proportion of variance h(w) is

the column of T̃S corresponding to the largest root.
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Inference

There is evidence in the literature that the null distribution of the

largest root λ should be related to the Tracy-Widom

distribution.

• Johnstone: (log(λ)− µ)/σ → TW when p < n.

• Turgeon et al.: The null distribution of λ is asymptotically
the same as the largest root of a scaled Wishart.

• The null distribution of the largest root of a Wishart is also

related to TW .

• More generally, random matrix theory suggests that the

Tracy-widom distribution is key in central-limit-like theorem

for random matrices.
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Inference – Heuristic

Estimate the null distribution

1. Perform a small number of permutations (∼ 25) on the rows

of Y;

2. For each permutation, compute the largest root statistic.

3. Fit a location-scale variant of the Tracy-Widom distribution.

Numerical investigations support this approach for

computing p-values. The main advantage over a traditional

permutation strategy is the computation time.
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Simulations



Simulation setting

• We compared 4 different approaches:

• PCEV with reduced-rank SVD

• Lasso

• Elastic net

• Principal Component Regression

• We simulated p = 500, 750, . . . , 2000 outcomes, 100

observations, one binary covariate.

• Covariance structure is block-diagonal:

• 10 uncorrelated blocks of equal size

• Within block is autoregressive (with parameter ρ) with baseline

correlation α

• 25% of the outcomes in each block are associated with the

covariate, with a fix effect size of 0.333.
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Simulation results: Power analysis
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Data analysis



Data

• DNA methylation measured with Illumina 450k on 120

cell-separated samples

• We focus on Monocytes only.

• 18 controls; 35 Rheumatoid arthritis, 24 Lupus, 43

Scleroderma

• We group CpGs by KEGG pathways

• On average about 1500 CpGs per pathway; max of 21,800.

• We compare PCEV to Lasso and Elastic-net.
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Results
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Results

Pathway PCEV pvalue Lasso Prop. Enet Prop.

Vitamin B6 metabolism < 3.4× 10−8 0.12 0.32

Primary bile acid biosynthesis < 3.4× 10−8 0.10 0.28

Fatty acid biosynthesis < 3.4× 10−8 0.07 0.25

Ascorbate and aldarate metabolism < 3.4× 10−8 0.10 0.24

Steroid biosynthesis < 3.4× 10−8 0.08 0.22

Glycosphingolipid biosynthesis < 3.4× 10−8 0.06 0.21

Histidine metabolism < 3.4× 10−8 0.07 0.20

Thiamine metabolism < 3.4× 10−8 0.10 0.19

Folate biosynthesis < 3.4× 10−8 0.10 0.19

Other types of O-glycan biosynthesis < 3.4× 10−8 0.09 0.19
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Conclusion

• Data summary is an important feature in data analysis, and

this can be achieved using dimension reduction techniques.

• In a high-dimensional setting, estimation and inference are
more challenging

• Estimation: Reduced-rank SVD;

• Inference: Fitted location-scale Tracy-Widom.

• Our approach is computationally simple and provides good

power.

• Simulations and data analyses confirm its advantage over a

more traditional approach using PCA, as well as other

high-dimensional approaches such as Lasso and Elastic-net

regression.
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Questions or comments?

For more information and updates, visit

maxturgeon.ca.
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