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Introduction

� Data revolution fueled by technological developments, era of

“big data”.

� In genomics and neuroimaging, high-throughput technologies
lead to high-dimensional data.

� High costs lead to small-to-moderate samples size.

� More features than samples (large p, small n)
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Omnibus Hypotheses and Dimension Reduction

� Traditionally, analysis performed one feature at a time.

� Large computational burden

� Conservative tests and low power

� Ignore correlation between features

� From a biological standpoint, there are natural groupings of

measurements

� Key: Summarise group-wise information using latent features

� Dimension Reduction
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High-dimensional data–Estimation

� Several approaches use regularization

� Zou et al. (2006) Sparse PCA

� Witten et al. (2009) Penalized Matrix Decomposition

� Other approaches use structured estimators

� Bickel & Levina (2008) Banded and thresholded covariance

estimators

� All of these approaches require tuning parameters, which

increases computational burden
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High-dimensional data–Inference

� Double Wishart problem and largest root

� Distribution of largest root is difficult to compute

� Several approximation strategies presented

� Chiani found simple recursive equations, but computationally

unstable

� Result of Johnstone gives an excellent good approximation

� Does not work with high-dimensional data
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Contribution of the thesis

In this thesis, I address the limitations outlined above.

� Block-independence leads to simple approach free of tuning

parameters

� Empirical estimator that extends Johnstone’s theorem to

high-dimensional data

� Application of these ideas to sequencing study of DNA

methylation and ACPA levels.
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First Manuscript–Estimation



Principal Component of Explained Variance

Let Y be a multivariate outcome of dimension p and X , a vector

of covariates.

We assume a linear relationship:

Y = βTX + ε.

The total variance of the outcome can then be decomposed as

Var(Y) = Var(βTX ) + Var(ε)

= VM + VR .
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PCEV: Statistical Model

Decompose the total variance of Y into:

1. Variance explained by the covariates;

2. Residual variance.
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PCEV: Statistical Model

The PCEV framework seeks a linear combination wTY such that

the proportion of variance explained by X is maximised:

R2(w) =
wTVMw

wT (VM + VR)w
.

Maximisation using a combination of Lagrange multipliers and

linear algebra.

Key observation: R2(w) measures the strength of the association
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Block-diagonal Estimator

I propose a block approach to the computation of PCEV in the

presence of high-dimensional outcomes.

� Suppose the outcome variables Y can be divided in blocks of
variables in such a way that

� Variables within blocks are correlated

� Variables between blocks are uncorrelated

Cov(Y) =

∗ 0 0

0 ∗ 0

0 0 ∗


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Block-diagonal Estimator

� We can perform PCEV on each of these blocks, resulting in a

component for each block.

� Treating all these “partial” PCEVs as a new, multivariate
pseudo-outcome, we can perform PCEV again; the result is a
linear combination of the original outcome variables.

� Mathematically equivalent to performing PCEV in a single-step

(under assumption)

� Extensive simulation study shows good power and robustness

of inference to violations of assumption.

� Presented application to genomics and neuroimaging data.
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Second Manuscript–Inference



Double Wishart Problem

� Recall that PCEV is maximising a Rayleigh quotient:

R2(w) =
wTVMw

wT (VM + VR)w
.

� Equivalent to finding largest root λ of a double Wishart

problem:

det (A− λ(A + B)) = 0,

where A = VM ,B = VR .
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Inference

� Evidence in the literature that the null distribution of the

largest root λ should be related to the Tracy-Widom

distribution.

� Result of Johnstone (2008) gives an excellent approximation

to the distribution using an explicit location-scale family of

the TW(1).
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Inference

� However, Johnstone’s theorem requires a rank condition on

the matrices (rarely satisfied in high dimensions).

� The null distribution of λ is asymptotically equal to that of
the largest root of a scaled Wishart (Srivastava).

� The null distribution of the largest root of a Wishart is also

related to the Tracy-Widom distribution.

� More generally, random matrix theory suggests that the

Tracy-widom distribution is key in central-limit-like theorems

for random matrices.
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Empirical Estimate

I proposed to obtain an empirical estimate as follows:

Estimate the null distribution

1. Perform a small number of permutations (∼ 50) on the rows

of Y;

2. For each permutation, compute the largest root statistic.

3. Fit a location-scale variant of the Tracy-Widom distribution.

Numerical investigations support this approach for computing

p-values. The main advantage over a traditional permutation

strategy is the computation time.
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Third Manuscript–Application



Data

� Anti-citrullinated Protein Antibody (ACPA) levels were

measured in 129 levels without any symptom of Rheumatoid

Arthritis (RA).

� DNA methylation levels were measured from whole-blood
samples using a targeted sequencing technique

� CpG dinucleotides were grouped in regions of interest before

the sequencing

� We have 23,350 regions to analyze individually, corresponding

to multivariate datasets Yk , k = 1, . . . , 23, 350.
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Method

� PCEV was performed independently on all regions.

� Significant amount of missing data; complete-case analysis.

� Analysis was adjusted for age, sex, and smoking status.

� ACPA levels are dichotomized into high and low.

� For the 2519 regions with more CpGs than observations, we

used the Tracy-Widom empirical estimator to obtain p-values.
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Results

� There were 1062 statistically significant regions at the

α = 0.05 level.

� Univariate analysis of 175,300 CpG dinucleotides yielded 42
significant results

� These 42 CpG dinucleotides were in 5 distinct regions.
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Discussion



Summary

� This thesis described specific approaches to dimension

reduction with high-dimensional datasets.

� Manuscript 1 : Block-independence assumption leads to

convenient estimation strategy that is free of tuning

parameters.

� Manuscript 2 : Empirical estimator provides valid p-values for

high-dimensional data by leveraging Johnstone’s theorem.

� Manuscript 3 : Application of this thesis’ ideas to a study of

the association between aCPA levels and DNA methylation.

� All methods from Manuscripts 1 & 2 are part of the R

package pcev.
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Limitations

� Inference for PCEV-block is robust to block-independence
violations, but not estimation

� Could have impact on downstream analyses.

� Empirical estimator does not address limitations due to power

� But combining with shrinkage estimator should improve power.

� Missing data and multivariate analysis
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Future Work

� Estimate effective number of independent tests in

region-based analyses

� Multiple imputation and PCEV

� Nonlinear dimension reduction
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Thank you

The slides can be found at

maxturgeon.ca/talks.
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