A novel approach to competing risks analysis using case-base sampling

Maxime Turgeon

April 27th, 2016

McGill University Department of Epidemiology, Biostatistics, and Occupational Health This project is joint work with:

- Sahir Bhatnagar
- Olli Saarela (U. Toronto)
- Jim Hanley

Introduction

Motivation

• In epidemiological studies of time-to-event data, a quantity of interest to the clinician and the patient is the absolute risk of an event, e.g. 5-year risk of developing cancer.

- In epidemiological studies of time-to-event data, a quantity of interest to the clinician and the patient is the absolute risk of an event, e.g. 5-year risk of developing cancer.
- In some settings, the analysis is complicated by the presence of competing events (e.g. complications due to bone-marrow transplant in a study of acute leukemia recurrence).

- In epidemiological studies of time-to-event data, a quantity of interest to the clinician and the patient is the absolute risk of an event, e.g. 5-year risk of developing cancer.
- In some settings, the analysis is complicated by the presence of competing events (e.g. complications due to bone-marrow transplant in a study of acute leukemia recurrence).
- A proper estimation of absolute risks needs to take these competing events into account.

• To compute absolute risks, we need to model the *cause-specific hazards*.

- To compute absolute risks, we need to model the *cause-specific hazards*.
 - Therefore, the Fine-Gray model is not appropriate.

- To compute absolute risks, we need to model the *cause-specific hazards*.
 - Therefore, the Fine-Gray model is not appropriate.
- A common alternative is the Cox proportional hazards model.

- To compute absolute risks, we need to model the *cause-specific hazards*.
 - Therefore, the Fine-Gray model is not appropriate.
- A common alternative is the Cox proportional hazards model.
 - However, this model leads to a two-step procedure for estimating the hazard function.

Summary

• We propose a **simple** approach to modeling **directly** the cause-specific hazards using (smooth) parametric families.

- We propose a **simple** approach to modeling **directly** the cause-specific hazards using (smooth) parametric families.
 - Our approach relies on Hanley & Miettinen's case base sampling method [1].

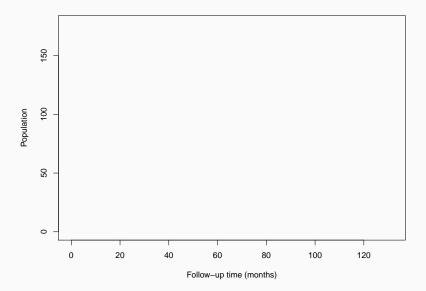
- We propose a **simple** approach to modeling **directly** the cause-specific hazards using (smooth) parametric families.
 - Our approach relies on Hanley & Miettinen's case base sampling method [1].
- Our approach allows for a **symmetric** treatment of all time variables.

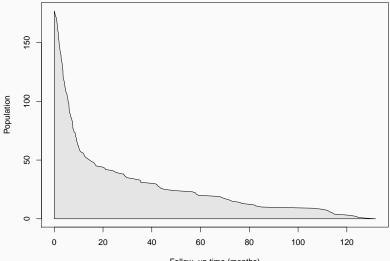
- We propose a **simple** approach to modeling **directly** the cause-specific hazards using (smooth) parametric families.
 - Our approach relies on Hanley & Miettinen's case base sampling method [1].
- Our approach allows for a **symmetric** treatment of all time variables.
- Finally, it also allows for variable selection.

- We propose a **simple** approach to modeling **directly** the cause-specific hazards using (smooth) parametric families.
 - Our approach relies on Hanley & Miettinen's case base sampling method [1].
- Our approach allows for a **symmetric** treatment of all time variables.
- Finally, it also allows for variable selection.

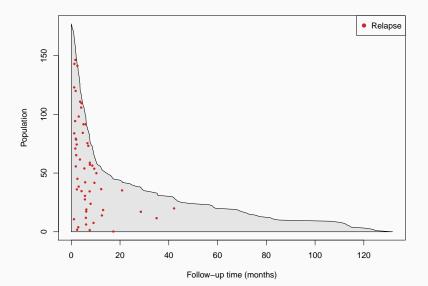
This method is currently available as an R package: http://sahirbhatnagar.com/casebase/

Case-base sampling

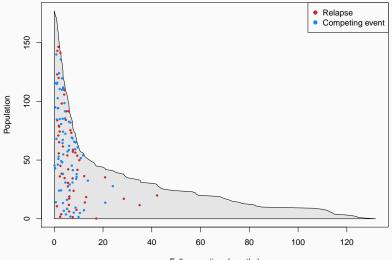




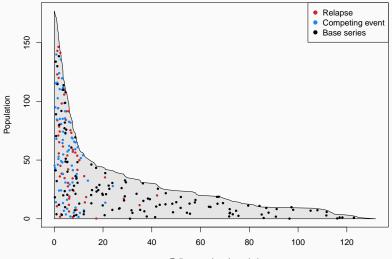
Follow-up time (months)



6/14



Follow-up time (months)



Follow-up time (months)

Case-base sampling

• "Paradigm shift": the unit of analysis is a *person-moment*.

- "Paradigm shift": the unit of analysis is a *person-moment*.
- Case-base sampling reduces the model fitting to a familiar multinomial regression.

- "Paradigm shift": the unit of analysis is a *person-moment*.
- Case-base sampling reduces the model fitting to a familiar multinomial regression.
 - The sampling process is taken into account using an offset term.

- "Paradigm shift": the unit of analysis is a *person-moment*.
- Case-base sampling reduces the model fitting to a familiar multinomial regression.
 - The sampling process is taken into account using an offset term.
- By sampling a large base series, the information loss eventually becomes negligible.

- "Paradigm shift": the unit of analysis is a *person-moment*.
- Case-base sampling reduces the model fitting to a familiar multinomial regression.
 - The sampling process is taken into account using an offset term.
- By sampling a large base series, the information loss eventually becomes negligible.
- This framework can easily be used with time-varying covariates (e.g. time-varying exposure).

Parametric families

$$\log \lambda(t; \alpha, \beta) = g(t; \alpha) + \beta X.$$

$$\log \lambda(t; \alpha, \beta) = g(t; \alpha) + \beta X.$$

Different choices of the function g leads to familiar parametric families:

$$\log \lambda(t; \alpha, \beta) = g(t; \alpha) + \beta X.$$

Different choices of the function g leads to familiar parametric families:

• Exponential: g is constant.

$$\log \lambda(t; \alpha, \beta) = g(t; \alpha) + \beta X.$$

Different choices of the function g leads to familiar parametric families:

- Exponential: g is constant.
- Gompertz: $g(t; \alpha) = \alpha t$.

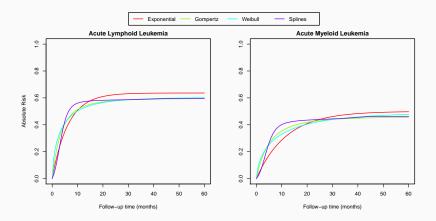
$$\log \lambda(t; \alpha, \beta) = g(t; \alpha) + \beta X.$$

Different choices of the function g leads to familiar parametric families:

- Exponential: g is constant.
- Gompertz: $g(t; \alpha) = \alpha t$.
- Weibull: $g(t; \alpha) = \alpha \log t$.

Data analysis

Variable description	Statistical summary	
Sex	M=Male (100)	
	F=Female (77)	
Disease	ALL (73)	
	AML (104)	
Phase	CR1 (47)	
	CR2 (45)	
	CR3 (12)	
	Relapse (73)	
Type of transplant	BM+PB (21)	
	PB (156)	
Age of patient (years)	4–62	
	30.47 (13.04)	
Failure time (months)	0.13–131.77	
	20.28 (30.78)	
Status indicator	0=censored (46)	
	1=relapse (56)	
	2=competing event (75)	



Absolute risk for female patient, median age, in relapse at transplant (stem cells from peripheral blood).

Model fit

Variable	Hazard ratio	95% CI
Sex	0.68	(0.39, 1.20)
Disease	0.51	(0.28, 0.92)
Phase CR2	1.18	(0.47, 2.96)
Phase CR3	1.51	(0.39, 5.86)
Phase Relapse	4.38	(2.01, 9.54)
Source	1.37	(0.45, 4.23)
Age	0.99	(0.97, 1.02)

Discussion

Discussion

• We proposed a simple and flexible way of directly modeling the hazard function.

- We proposed a simple and flexible way of directly modeling the hazard function.
 - This leads to smooth estimates of the absolute risks.

- We proposed a simple and flexible way of directly modeling the hazard function.
 - This leads to smooth estimates of the absolute risks.
- We are explicitely modeling time, and we cant therefore how to model the effect of time on the hazard function.

- We proposed a simple and flexible way of directly modeling the hazard function.
 - This leads to smooth estimates of the absolute risks.
- We are explicitely modeling time, and we cant therefore how to model the effect of time on the hazard function.
- We can test the significance of covariates, in a similar way to traditional competing risks approaches.

References I

- J. A. Hanley and O. S. Miettinen.

Fitting smooth-in-time prognostic risk functions via logistic regression.

The International Journal of Biostatistics, 5(1), 2009.

O. Saarela.

A case-base sampling method for estimating recurrent event intensities.

Lifetime data analysis, pages 1–17, 2015.

O. Saarela and J. A. Hanley.

Case-base methods for studying vaccination safety. Biometrics, 71(1):42-52, 2015.

L. Scrucca, A. Santucci, and F. Aversa. Regression modeling of competing risk using R: an in depth guide for clinicians.

Bone marrow transplantation, 45(9):1388–1395, 2010.

Questions or comments?

For more details, visit http://sahirbhatnagar.com/casebase/