Dimension reduction

SCI 2000-Guest Lecture

Max Turgeon
24 November 2020

University of Manitoba

Motivation

Dimension reduction

- Most data is multivariate.
- We measure more than one variable on each patient.
- We measure more than one characteristic on each player of a cricket team.
- By construction, images are multivariate data.
- Otherwise it would be a single pixel...
- Dimension reduction methods transform multivariate data to help us find "hidden" structures.
- Linear dimension reduction uses linear transformations
- Rotation, reflection, rescaling and projection onto lower dimensional space.
- After transformation, relationships may be easier to see.

Principal Component Analysis

Main definition i

- PCA: Principal Component Analysis
- Dimension reduction method
- Let \mathbb{Y} be a $n \times p$ matrix.
- n observations, each contain p measurements.
- We are looking for a linear transformation $W(p \times k)$ such that
- The columns of $\mathbb{Y} W$ are orthogonal.
- The sample variance of column j is larger than that of column $j+1$.

Main definition ii

PCA Theorem

Let $\lambda_{1} \geq \cdots \geq \lambda_{p}$ be the eigenvalues of the sample covariance matrix S, with corresponding unit-norm eigenvectors w_{1}, \ldots, w_{p}.
The PCA solution is given by the matrix

$$
W=\left(\begin{array}{lll}
w_{1} & \cdots & w_{k}
\end{array}\right)
$$

whose j-th column is w_{j}.

Example i

Example ii

Example iii

Properties of PCA i

- Some vocabulary:
- $Z_{j}=\mathbb{Y} w_{j}$ is called the j-th principal component of \mathbb{Y}.
- w_{j} is the j-th vector of loadings.
- Note that we can take $k=p$, in which case we do not reduce the dimension of \mathbb{Y}, but we transform it into a matrix of the same dimension, but orthogonal columns.
- Each linear transformation $\mathbb{Y} w_{j}$ contributes $\lambda_{j} / \sum_{k} \lambda_{k}$ as percentage of the overall variance.

Properties of PCA ii

- Selecting k : One common strategy is to select a threshold (e.g. $c=0.9$) such that

$$
\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{p} \lambda_{i}} \geq c .
$$

Demo

See demo in Jupyter notebook.

Scree plot

- A scree plot is a plot with the sequence $1, \ldots, p$ on the x-axis, and the sequence $\lambda_{1}, \ldots, \lambda_{p}$ on the y -axis.
- Another common strategy for selecting k is to choose the point where the curve starts to flatten out.
- Note: This inflection point does not necessarily exist, and it may be hard to identify.

Geometric interpretation of PCA i

- The definition of PCA as a linear combination that maximises variance is due to Hotelling (1933).
- But PCA was actually introduced earlier by Pearson (1901)
- On Lines and Planes of Closest Fit to Systems of Points in space
- He defined PCA as the best approximation of the data by a linear manifold
- Let's suppose we have a lower dimension representation of \mathbb{Y}, denoted by a $n \times k$ matrix \mathbb{Z}.

Geometric interpretation of PCA ii

- We want to reconstruct \mathbb{Y} using an affine transformation

$$
f(z)=\mu+W_{k} z,
$$

where W_{k} is a $p \times k$ matrix.

- We want to find μ, W_{k}, Z_{i} that minimises the reconstruction error:

$$
\min _{\mu, W_{k}, Z_{i}} \sum_{i=1}^{n}\left\|Y_{i}-\mu-W_{k} Z_{i}\right\|^{2}
$$

Geometric interpretation of PCA iii

Eckart-Young theorem

The reconstruction error is minimised by taking W_{k} to be the matrix
whose columns are the first k eigenvectors of the sample covariance matrix S.

Equivalently, we can take the matrix whose columns are the first k right singular vectors of the centered data matrix $\tilde{\mathbb{Y}}$.

MNIST dataset

Description of data

- The MNIST dataset contains images of hand-written digits (0 to 9)
- It can be downloaded from
http://yann.lecun.com/exdb/mnist/
- Each image is 784 gray-scale pixels (28×28).
- The data is separated into a training and testing dataset.
- 60,000 training samples
- 10,000 testing samples

Data Visualization i

Data Visualization ii

Data Visualization iii

Data Visualization iv

Data Visualization v

PC1

PC3

PC2

PC4

Data Visualization vi

Original
Approx

Application: Gene expression
analysis

Central Dogma of Molecular Biology

Microarray Analysis

PCA and Gene expression analysis i

- The following figures come from Lenz et al. (2016) in Nature-Scientific Reports.
- Principal components analysis and the reported low intrinsic dimensionality of gene expression microarray data
- They collected data on transcript abundance for over 45,000 transcripts. The data was collected on 5372 samples, corresponding to 369 different tissues, cell lines, or disease states.
- Main idea: proteins work together, so transcript should be highly correlated.

PCA and Gene expression analysis ii

- The authors argue that only the first 3-4 principal components of this gigantic dataset are biologically relevant!

Summary

- Dimension reduction transforms the data to make hidden structures more visible.
- Different methods highlight different features.
- PCA can be used for visualization of image data.
- Transform through PCA and look at the first few dimensions.
- PCA can be used with all types of highly structured data.
- Gene expression can be measured using high-resolution images.
- These images are turned into abundance values.
- PCA is then used to transform these abundance values.

