Dimension reduction

SCI 2000–Guest Lecture

Max Turgeon

24 November 2020

University of Manitoba

Motivation

Dimension reduction

- Most data is *multivariate*.
 - We measure more than one variable on each patient.
 - We measure more than one characteristic on each player of a cricket team.
- By construction, **images** are multivariate data.
 - Otherwise it would be a single pixel...
- **Dimension reduction methods** transform multivariate data to help us find "hidden" structures.
- Linear dimension reduction uses linear transformations
 - Rotation, reflection, rescaling and projection onto lower dimensional space.
 - After transformation, relationships may be easier to see.

Principal Component Analysis

- PCA: Principal Component Analysis
 - Dimension reduction method
- Let $\mathbb Y$ be a $n \times p$ matrix.
 - *n* observations, each contain *p* measurements.
- We are looking for a linear transformation $W(p \times k)$ such that
 - The columns of $\mathbb{Y}W$ are orthogonal.
 - The sample variance of column j is larger than that of column j + 1.

PCA Theorem

Let $\lambda_1 \geq \cdots \geq \lambda_p$ be the eigenvalues of the sample covariance matrix *S*, with corresponding unit-norm eigenvectors w_1, \ldots, w_p . The PCA solution is given by the matrix

$$W = \begin{pmatrix} w_1 & \cdots & w_k \end{pmatrix},$$

whose *j*-th column is w_j .

Example i

Example ii

Example iii

Properties of PCA i

- Some vocabulary:
 - $Z_j = \mathbb{Y}w_j$ is called the *j*-th **principal component** of \mathbb{Y} .
 - w_j is the *j*-th vector of **loadings**.
- Note that we can take k = p, in which case we do not reduce the dimension of \mathbb{Y} , but we *transform* it into a matrix of the same dimension, but orthogonal columns.
- Each linear transformation $\mathbb{Y}w_j$ contributes $\lambda_j / \sum_k \lambda_k$ as percentage of the overall variance.

• Selecting k: One common strategy is to select a threshold (e.g. c = 0.9) such that

$$\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{p} \lambda_i} \ge c.$$

See demo in Jupyter notebook.

- A scree plot is a plot with the sequence $1, \ldots, p$ on the x-axis, and the sequence $\lambda_1, \ldots, \lambda_p$ on the y-axis.
- Another common strategy for selecting *k* is to choose the point where the curve starts to flatten out.
 - **Note**: This inflection point does not necessarily exist, and it may be hard to identify.

Geometric interpretation of PCA i

- The definition of PCA as a linear combination that maximises variance is due to Hotelling (1933).
- But PCA was actually introduced earlier by Pearson (1901)
 - On Lines and Planes of Closest Fit to Systems of Points in Space
- He defined PCA as the **best approximation of the data by a linear manifold**
- Let's suppose we have a lower dimension representation of \mathbb{Y} , denoted by a $n \times k$ matrix \mathbb{Z} .

Geometric interpretation of PCA ii

 $\cdot\,$ We want to reconstruct $\mathbb {Y}$ using an affine transformation

$$f(z) = \mu + W_k z,$$

where W_k is a $p \times k$ matrix.

• We want to find μ , W_k , Z_i that minimises the **reconstruction** error:

$$\min_{\boldsymbol{\mu}, \boldsymbol{W}_k, \boldsymbol{Z}_i} \sum_{i=1}^n \| \boldsymbol{Y}_i - \boldsymbol{\mu} - \boldsymbol{W}_k \boldsymbol{Z}_i \|^2.$$

Eckart-Young theorem

The reconstruction error is minimised by taking W_k to be the matrix whose columns are the first k eigenvectors of the sample covariance matrix S.

Equivalently, we can take the matrix whose columns are the first k right singular vectors of the centered data matrix $\tilde{\mathbb{Y}}$.

MNIST dataset

Description of data

- The MNIST dataset contains images of hand-written digits (0 to 9)
 - It can be downloaded from http://yann.lecun.com/exdb/mnist/
- Each image is 784 gray-scale pixels (28 \times 28).
- The data is separated into a *training* and *testing* dataset.
 - 60,000 training samples
 - 10,000 testing samples

Data Visualization i

Data Visualization ii

Data Visualization iii

Data Visualization iv

Data Visualization v

PC3

PC4

Data Visualization vi

Original

Approx

Application: Gene expression analysis

Central Dogma of Molecular Biology

Microarray Analysis

PCA and Gene expression analysis i

- The following figures come from Lenz *et al.* (2016) in Nature–Scientific Reports.
 - Principal components analysis and the reported low intrinsic dimensionality of gene expression microarray data
- They collected data on transcript abundance for over 45,000 transcripts. The data was collected on 5372 samples, corresponding to 369 different tissues, cell lines, or disease states.
- Main idea: proteins work together, so transcript should be highly correlated.

PCA and Gene expression analysis ii

• The authors argue that only the first 3-4 principal components of this gigantic dataset are biologically relevant!

- Dimension reduction transforms the data to make hidden structures more visible.
 - Different methods highlight different features.
- PCA can be used for visualization of image data.
 - Transform through PCA and look at the first few dimensions.
- PCA can be used with all types of highly structured data.
 - Gene expression can be measured using high-resolution images.
 - These images are turned into abundance values.
 - PCA is then used to transform these abundance values.