Canonical Correlation Analysis

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Introduction

- Canonical Correlation Analysis (CCA) is a dimension reduction method that is similar to PCA, but where we simultaneously reduce the dimension of two random vectors \mathbf{Y} and \mathbf{X}.
- Instead of trying to explain overall variance, we try to explain the covariance $\operatorname{Cov}(\mathbf{Y}, \mathbf{X})$.
- Note that this is a measure of association between \mathbf{Y} and \mathbf{X}.
- Examples include:
- Arithmetic speed and power (Y) and reading speed and power (X)
- College performance metrics (Y) and high-school achievement metrics (X)

Population model i

- Let \mathbf{Y} and \mathbf{X} be p - and q-dimensional random vectors, respectively.
- We will assume that $p \leq q$.
- Let μ_{Y} and μ_{X} be the mean of \mathbf{Y} and \mathbf{X}, respectively.
- Let Σ_{Y} and Σ_{X} be the covariance matrix of \mathbf{Y} and \mathbf{X}, respectively, and let $\Sigma_{Y X}=\Sigma_{X Y}^{T}$ be the covariance matrix $\operatorname{Cov}(\mathbf{Y}, \mathbf{X})$.
- Assume Σ_{Y} and Σ_{X} are positive definite.
- Note that $\Sigma_{Y X}$ has $p q$ entries, corresponding to all covariances between a component of \mathbf{Y} and a component of \mathbf{X}.

Population model if

- Goal of CCA: Summarise $\Sigma_{Y X}$ with p numbers.
- These p numbers will be called the canonical correlations.

Dimension reduction i

- Let $U=a^{T} \mathbf{Y}$ and $V=b^{T} \mathbf{Y}$ be linear combinations of \mathbf{Y} and \mathbf{X}, respectively.
- We have:
- $\operatorname{Var}(U)=a^{T} \Sigma_{Y} a$
- $\operatorname{Var}(V)=b^{T} \Sigma_{X} b$
- $\operatorname{Cov}(U, V)=a^{T} \Sigma_{Y X} b$.
- Therefore, we can write the correlation between U and V as follows:

$$
\operatorname{Corr}(U, V)=\frac{a^{T} \Sigma_{Y X} b}{\sqrt{a^{T} \Sigma_{Y} a} \sqrt{b^{T} \Sigma_{X} b}}
$$

Dimension reduction it

- We are looking for vectors $a \in \mathbb{R}^{p}, b \in \mathbb{R}^{q}$ such that $\operatorname{Corr}(U, V)$ is maximised.

Definitions

- The first pair of canonical variates is the pair of linear combinations U_{1}, V_{1} with unit variance such that $\operatorname{Corr}\left(U_{1}, V_{1}\right)$ is maximised.
- The k-th pair of canonical variates is the pair of linear combinations U_{k}, V_{k} with unit variance such that $\operatorname{Corr}\left(U_{k}, V_{k}\right)$ is maximised among all pairs that are uncorrelated with the previous $k-1$ pairs.
- When U_{k}, V_{k} is the k-th pair of canonical variates, we say that $\rho_{k}=\operatorname{Corr}\left(U_{k}, V_{k}\right)$ is the k-th canonical correlation.

Derivation of canonical variates i

- Make a change of variables:
- $\tilde{a}=\Sigma_{Y}^{1 / 2} a^{2}$
- We can then rewrite the correlation:

$$
\begin{aligned}
\operatorname{Corr}(U, V) & =\frac{a^{T} \Sigma_{Y X} b}{\sqrt{a^{T} \Sigma_{Y} a} \sqrt{b^{T} \Sigma_{X} b}} \\
& =\frac{\tilde{a}^{T} \Sigma_{Y}^{-1 / 2} \Sigma_{Y X} \Sigma_{X}^{-1 / 2} \tilde{b}}{\sqrt{\tilde{a}^{T} \tilde{a}} \sqrt{\tilde{b} T} \tilde{b}}
\end{aligned}
$$

Derivation of canonical variates ii

- Let $M=\Sigma_{Y}^{-1 / 2} \Sigma_{Y X} \Sigma_{X}^{-1 / 2}$. We have

$$
\max _{a, b} \operatorname{Corr}\left(a^{T} \mathbf{Y}, b^{T} \mathbf{Y}\right) \Longleftrightarrow \max _{\tilde{a}, \tilde{b}:\|\tilde{a}\|=1,\|\tilde{b}\|=1} \tilde{a}^{T} M \tilde{b}
$$

- The solution to this maximisation problem involves the singular value decomposition of M.
- Equivalently, it involves the eigendecomposition of $M M^{T}$, where

$$
M M^{T}=\Sigma_{Y}^{-1 / 2} \Sigma_{Y X} \Sigma_{X}^{-1} \Sigma_{X Y} \Sigma_{Y}^{-1 / 2}
$$

CCA: Main theorem i

- Let $\lambda_{1} \geq \cdots \geq \lambda_{p}$ be the eigenvalues of $\Sigma_{Y}^{-1 / 2} \Sigma_{Y X} \Sigma_{X}^{-1} \Sigma_{X Y} \Sigma_{Y}^{-1 / 2}$.
- Let e_{1}, \ldots, e_{p} be the corresponding eigenvector with unit norm.
- Note that $\lambda_{1} \geq \cdots \geq \lambda_{p}$ are also the p largest eigenvalues of

$$
M^{T} M=\Sigma_{X}^{-1 / 2} \Sigma_{X Y} \Sigma_{Y}^{-1} \Sigma_{Y X} \Sigma_{X}^{-1 / 2}
$$

- Let f_{1}, \ldots, f_{p} be the corresponding eigenvectors with unit norm.

CCA: Main theorem if

- Then the k-th pair of canonical variates is given by

$$
U_{k}=e_{k}^{T} \Sigma_{Y}^{-1 / 2} \mathbf{Y}, \quad V_{k}=f_{k}^{T} \Sigma_{X}^{-1 / 2} \mathbf{X}
$$

- Moreover, we have

$$
\rho_{k}=\operatorname{Corr}\left(U_{k}, V_{k}\right)=\sqrt{\lambda_{k}} .
$$

Some vocabulary

1. Canonical directions: $\left(e_{k}^{T} \Sigma_{Y}^{-1 / 2}, f_{k}^{T} \Sigma_{X}^{-1 / 2}\right)$
2. Canonical variates: $\left(U_{k}, V_{k}\right)=\left(e_{k}^{T} \Sigma_{Y}^{-1 / 2} \mathbf{Y}, f_{k}^{T} \Sigma_{X}^{-1 / 2} \mathbf{X}\right)$
3. Canonical correlations: $\rho_{k}=\sqrt{\lambda_{k}}$

Example i

```
Sigma_Y <- matrix(c(1, 0.4, 0.4, 1), ncol = 2)
Sigma_X <- matrix(c(1, 0.2, 0.2, 1), ncol = 2)
Sigma_YX <- matrix(c(0.5, 0.3, 0.6, 0.4), ncol = 2)
Sigma_XY <- t(Sigma_YX)
```

rbind(cbind(Sigma_Y, Sigma_YX), cbind(Sigma_XY, Sigma_X))

Example if

```
## [,1] [,2] [,3] [,4]
## [1,] 1.0
## [2,] 0.4 1.0
## [3,] 0.5 0.3 1.0
## [4,] 0.6 0.4 0.2 1.0
```


Example iif

```
library(expm)
sqrt_Y <- sqrtm(Sigma_Y)
sqrt_X <- sqrtm(Sigma_X)
M1 <- solve(sqrt_Y) %*% Sigma_YX %*% solve(Sigma_X)%*%
    Sigma_XY %*% solve(sqrt_Y)
(decomp1 <- eigen(M1))
```


Example iv

\#\# eigen() decomposition

\#\# \$values
\#\# [1] 0.54571803170 .0009089525
\#\#
\#\# \$vectors
\#\#
[, 1]
[,2]
\#\# [1,] -0.8946536 0.4467605
\#\# [2,] -0.4467605 -0.8946536
decomp1\$vectors[,1] \%*\% solve(sqrt_Y)

Example

$$
\begin{array}{lrr}
\text { \#\# } & {[, 1]} & {[, 2]} \\
\text { \#\# } & {[1,]} & -0.8559647
\end{array}-0.2777371
$$

M2 <- solve(sqrt_X) $\% * \%$ Sigma_XY $\% * \%$ solve(Sigma_Y) $\% * \%$ Sigma_YX \%*\% solve(sqrt_X)
decomp2 <- eigen(M2)
decomp2\$vectors[,1] \%*\% solve(sqrt_X)
\#\#

\#\# [1,] 0.54481190 .7366455

Example vi

sqrt(decomp1\$values)
\#\# [1] 0.73872731 0.03014884

Sample CCA

- Let $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$ and $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ be random samples, and arrange them in $n \times p$ and $n \times q$ matrices \mathbb{Y}, \mathbb{X}, respectively.
- Note that both sample sizes are equal.
- Indeed, we assume that $\left(\mathbf{Y}_{i}, \mathbf{X}_{i}\right)$ are sampled jointly, i.e. on the same experimental unit.
- Let $\overline{\mathbf{Y}}$ and $\overline{\mathbf{X}}$ be the sample means.
- Let S_{Y} and S_{X} be the sample covariances.
- Define

$$
S_{Y X}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T}
$$

Sample CCA: Main theorem

- Let $\hat{\lambda}_{1} \geq \cdots \geq \hat{\lambda}_{p}$ be the eigenvalues of $S_{Y}^{-1 / 2} S_{Y X} S_{X}^{-1} S_{X Y} S_{Y}^{-1 / 2}$.
- Let $\hat{e}_{1}, \ldots, \hat{e}_{p}$ be the corresponding eigenvector with unit norm.
- Note that $\hat{\lambda}_{1} \geq \cdots \geq \hat{\lambda}_{p}$ are also the p largest eigenvalues of

$$
S_{X}^{-1 / 2} S_{X Y} S_{Y}^{-1} S_{Y X} S_{X}^{-1 / 2}
$$

- Let $\hat{f}_{1}, \ldots, \hat{f}_{p}$ be the corresponding eigenvectors with unit norm.

Sample CCA: Main theorem if

- Then the k-th pair of sample canonical variates is given by

$$
\hat{U}_{k}=\mathbb{Y} S_{Y}^{-1 / 2} \hat{e}_{k}, \quad \hat{V}_{k}=\mathbb{X} S_{X}^{-1 / 2} \hat{f}_{k}
$$

- Moreover, we have that $\hat{\rho}_{k}=\sqrt{\hat{\lambda}_{k}}$ is the sample correlation of \hat{U}_{k} and \hat{V}_{k}.

Example (cont'd)

```
# Let's generate data
library(mvtnorm)
Sigma <- rbind(cbind(Sigma_Y, Sigma_YX),
                        cbind(Sigma_XY, Sigma_X))
YX <- rmvnorm(100, sigma = Sigma)
Y <- YX[,1:2]
X <- YX[,3:4]
decomp <- cancor(x = X, y = Y)
```


Example (cont'd) if

$\mathrm{U}<-\mathrm{Y} \% * \%$ decomp\$ycoef
V <- X \%*\% decomp\$xcoef
diag(cor(U, V))
\#\# [1] 0.700841090 .01977754
decomp\$cor
\#\# [1] 0.700841090 .01977754

Example i

```
library(tidyverse)
library(dslabs)
X <- olive %>%
    select(-area, -region) %>%
    as.matrix
Y <- olive %>%
    select(region) %>%
    model.matrix(~ region - 1, data = .)
```


Example if

head (unname (Y))

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	0	0	1
\#\# [2,]	0	0	1
\#\# [3,]	0	0	1
\#\# [4,]	0	0	1
\#\# [5,]	0	0	1
\#\# [6,]	0	0	1

Example iif

decomp <- cancor (X, Y)

V <- X \% *\% decomp\$xcoef

Example iv

$$
\begin{aligned}
& \text { data.frame(} \\
& \begin{array}{l}
\mathrm{V} 1=\mathrm{V}[, 1], \\
\mathrm{V} 2=\mathrm{V}[, 2], \\
\text { region }=\text { olive\$region } \\
) \%>\% \\
\text { ggplot(aes (V1, V2, colour }=\text { region)) }+ \\
\text { geom_point() }+ \\
\text { theme_minimal () }
\end{array} .
\end{aligned}
$$

Example v

Comments i

- The main difference between CCA and Multivariate Linear Regression is that CCA treats \mathbb{Y} and \mathbb{X} symmetrically.
- As with PCA, you can use CCA and the covariance matrix or the correlation matrix.
- The latter is equivalent to performing CCA on the standardised variables.
- Note that sample CCA involves inverting the sample covariance matrices S_{Y} and S_{X} :
- This means we need to assume $p, q<n$.
- In general, this is what drives most of the performance (or lack thereof) of CCA.

Comments if

- There may be gains in efficiency by directly estimating the inverse covariance.
- When one of the two datasets \mathbb{Y} or \mathbb{X} represent indicators variables for a categorical variables (cf. the olive dataset), CCA is equivalent to Linear Discriminant Analysis.
- To learn more about this method, see a course/textbook on Statistical Learning.

Proportions of Explained Sample Variance

- Just like in PCA, there is a notion of proportion of explained variance that may be helpful in determining the number of canonical variates to retain.
- Assume that $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$ and $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ have been standardized. The matrices A and B of canonical directions have the following properties:
- The rows are the canonical directions (by definition!)
- The columns of the inverses A^{-1}, B^{-1} are the sample correlations between the canonical variates and the standardized variables.

Proportions of Explained Sample Variance
 ii

- Moreover, we have
- $\operatorname{Corr}(\mathbb{Y})=A^{-1} A^{-T}$
- $\operatorname{Corr}(\mathbb{X})=B^{-1} B^{-T}$
- But recall that
- $\operatorname{tr}(\operatorname{Corr}(\mathbb{Y}))=p$
- $\operatorname{tr}(\operatorname{Corr}(\mathbb{X}))=q$

Proportions of Explained Sample Variance iif

- Putting this all together, we have that
- Proportion of total standardized sample variance in

$$
\begin{aligned}
& \mathbb{Y}=\left(\begin{array}{lll}
\mathbb{Y}_{1} & \cdots & \mathbb{Y}_{p}
\end{array}\right) \text { explained by } \hat{U}_{1}, \ldots, \hat{U}_{r}: \\
& R^{2}\left(\mathbf{Y} \mid \hat{U}_{1}, \ldots, \hat{U}_{r}\right)=\frac{\sum_{i=1}^{r} \sum_{j=1}^{p} \operatorname{Corr}\left(\hat{U}_{i}, \mathbb{Y}_{k}\right)^{2}}{p}
\end{aligned}
$$

- Proportion of total standardized sample variance in $\mathbb{X}=\left(\begin{array}{lll}\mathbb{X}_{1} & \cdots & \mathbb{X}_{q}\end{array}\right)$ explained by $\hat{V}_{1}, \ldots, \hat{V}_{r}$:

$$
R^{2}\left(\mathbf{X} \mid \hat{V}_{1}, \ldots, \hat{V}_{r}\right)=\frac{\sum_{i=1}^{r} \sum_{j=1}^{q} \operatorname{Corr}\left(\hat{V}_{i}, \mathbb{X}_{k}\right)^{2}}{q}
$$

Example i

```
# Olive data
X_sc <- scale(X)
Y_sc <- scale(Y)
decomp_sc <- cancor(X_sc, Y_sc)
V_sc <- X_sc %*% decomp_sc$xcoef
colnames(V_sc) <- paste0("CC", seq_len(ncol(V_sc)))
(prop_X <- rowMeans(cor(V_sc, X_sc) ^2))
```


Example ii

\#\#	CC1	CC2	CC3	CC4	CC5	CC6	CC7	CC8
\#\#	0.340	0.153	0.124	0.081	0.134	0.039	0.067	0.061

cumsum(prop_X)
\#\# CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
\#\# $0.34 \quad 0.49 \quad 0.620 .70 \quad 0.830 .870 .941 .00$

Example iif

```
# But since we are dealing with correlations
# We get the same with unstandardized variables
decomp <- cancor(X, Y)
V <- X %*% decomp$xcoef
colnames(V) <- pasteO("CC", seq_len(ncol(V)))
(prop_X <- rowMeans(cor(V, X)^2))
\begin{tabular}{rrrrrrrrr} 
\#\# & CC1 & CC2 & CC3 & CC4 & CC5 & CC6 & CC7 & CC8 \\
\#\# & 0.340 & 0.153 & 0.124 & 0.081 & 0.134 & 0.039 & 0.067 & 0.061
\end{tabular}
```


Example iv

cumsum (prop_X)
\#\# CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
\#\# $0.34 \quad 0.490 .620 .70 \quad 0.830 .870 .941 .00$

Interpreting the population canonical variates

- To help interpretating the canonical variates, let's go back to the population model.
- Define

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
e_{1}^{T} \Sigma_{Y}^{-1 / 2} & \cdots & e_{p}^{T} \Sigma_{Y}^{-1 / 2}
\end{array}\right)^{T}, \\
& B=\left(\begin{array}{lll}
f_{1}^{T} \Sigma_{X}^{-1 / 2} & \cdots & f_{p}^{T} \Sigma_{X}^{-1 / 2}
\end{array}\right)^{T} .
\end{aligned}
$$

- In other words, both A and B are $p \times p$, and their rows are the canonical directions.

Interpreting the population canonical variates

- Using this notation, we can get all canonical variates using one linear transformation:

$$
\mathbf{U}=A \mathbf{Y}, \quad \mathbf{Y}=B \mathbf{X}
$$

- We then have

$$
\operatorname{Cov}(\mathbf{U}, \mathbf{Y})=\operatorname{Cov}(A \mathbf{Y}, \mathbf{Y})=A \Sigma_{Y}
$$

- Since $\operatorname{Cov}(\mathbf{U})=I_{p}$, we have

$$
\operatorname{Corr}\left(U_{k}, Y_{i}\right)=\operatorname{Cov}\left(U_{k}, \sigma_{i}^{-1} Y_{i}\right)
$$

where σ_{i}^{2} is the variance of Y_{i}.

Interpreting the population canonical variates iii

- If we let D_{Y} be the diagonal matrix whose i-th diagonal element is $\sigma_{i}=\sqrt{\operatorname{Var}\left(Y_{i}\right)}$, we can write

$$
\operatorname{Corr}(\mathbf{U}, \mathbf{Y})=A \Sigma_{Y} D_{Y}^{-1}
$$

- Using similar computations, we get

$$
\begin{aligned}
\operatorname{Corr}(\mathbf{U}, \mathbf{Y})=A \Sigma_{Y} D_{Y}^{-1}, & \operatorname{Corr}(\mathbf{V}, \mathbf{Y})=B \Sigma_{X Y} D_{Y}^{-1} \\
\operatorname{Corr}(\mathbf{U}, \mathbf{X})=A \Sigma_{Y X} D_{X}^{-1}, & \operatorname{Corr}(\mathbf{V}, \mathbf{X})=B \Sigma_{X} D_{X}^{-1}
\end{aligned}
$$

- These quantities (and their sample counterparts) give us information about the contribution of the original variables to the canonical variates.

Example i

\# Let's go back to the olive data
decomp <- cancor (X, Y)
V <- X \%*\% decomp\$xcoef
colnames(V) <- pasteO("CC", seq_len(8))
library(lattice)
levelplot(cor(X, V[,1:2]),

$$
\begin{aligned}
& \text { at }=\operatorname{seq}(-1,1, \text { by }=0.1), \\
& \text { xlab }=" ", \text { ylab }=" ")
\end{aligned}
$$

Example if

Example iif

levelplot(cor(Y, V[,1:2]),

$$
\begin{aligned}
& \text { at }=\operatorname{seq}(-1,1, \text { by }=0.1), \\
& \text { xlab }=\|", y l a b="\|)
\end{aligned}
$$

Example iv

Generalization of Correlation coefficients i

- The canonical correlations can be seen as a generalization of many notions of "correlation".
- If both \mathbf{Y}, \mathbf{X} are one dimensional, then

$$
\operatorname{Corr}\left(a^{T} \mathbf{Y}, b^{T} \mathbf{X}\right)=\operatorname{Corr}(\mathbf{Y}, \mathbf{X}), \quad \text { for all } a, b
$$

- In other words, the canonical correlation generalizes the univariate correlation coefficient.
- Then assume \mathbf{Y} is one-dimensional, but \mathbf{X} is q-dimensional. Then CCA is equivalent to (univariate) linear regression, and the first canonical correlation is equal to the multiple correlation coefficient.

Generalization of Correlation coefficients ii

- Now, let's go back to full-generality: $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{p}\right)$, $\mathbf{X}=\left(X_{1}, \ldots, X_{q}\right)$. Let a be all zero except for a one in position i, and let b be all zero except for a one in position j. We have

$$
\begin{aligned}
\left|\operatorname{Corr}\left(Y_{i}, X_{j}\right)\right| & =\left|\operatorname{Corr}\left(a^{T} \mathbf{Y}, b^{T} \mathbf{X}\right)\right| \\
& \leq \max _{a, b} \operatorname{Corr}\left(a^{T} \mathbf{Y}, b^{T} \mathbf{X}\right) \\
& =\rho_{1}
\end{aligned}
$$

Generalization of Correlation coefficients iif

- In other words, the first canonical correlation is larger than any entry (in absolute value) in the matrix $\operatorname{Corr}(\mathbf{Y}, \mathbf{X})$.
- Finally, the k-th canonical correlation ρ_{k} can be interpreted as the multiple correlation coefficient of two different univariate linear regression model:
- U_{k} against \mathbf{X};
- V_{k} against \mathbf{Y}.

Example (cont'd)

\# Canonical correlations decomp\$cor

\#\# [1] 0.950 .84
\# Maximum value in correlation matrix $\max (\operatorname{abs}(\operatorname{cor}(\mathrm{Y}, \mathrm{X})))$
\#\# [1] 0.89

Example (cont'd) if

```
\# Multiple correlation coefficients sqrt(summary(lm(V[,1] ~ Y))\$r.squared)
```

\#\# [1] 0.95
sqrt (summary (lm(V[,2] ~ Y)) \$r.squared)
\#\# [1] 0.84

Geometric interpretation

- Let's look at a geometric interpretation of CCA.
- First, some notation:
- Let A be the matrix whose k-th row is the k-th canonical direction $e_{k}^{T} \Sigma_{Y}^{-1 / 2}$.
- Let E be the matrix whose k-th column is the eigenvector e_{k}. Note that $E^{T} E=I_{p}$.
- We thus have $A=E^{T} \Sigma_{Y}^{-1 / 2}$.
- We get all canonical variates U_{k} by transforming \mathbf{Y} using A:

$$
\mathbf{U}=A \mathbf{Y}
$$

Geometric interpretation ii

- Now, using the spectral decomposition of Σ_{Y}, we can write

$$
A=E^{T} \Sigma_{Y}^{-1 / 2}=E^{T} P_{Y} \Lambda_{Y}^{-1 / 2} P_{Y}^{T}
$$

where P_{Y} contains the eigenvectors of Σ_{Y} and Λ_{Y} is the diagonal matrix with its eigenvalues.

- Therefore, we can see that

$$
\mathbf{U}=A \mathbf{Y}=E^{T} P_{Y} \Lambda_{Y}^{-1 / 2} P_{Y}^{T} \mathbf{Y}
$$

Geometric interpretation ifi

- Let's look at this expression in stages:
- $P_{Y}^{T} \mathbf{Y}$: This is the matrix of principal components of Y.
- $\Lambda_{Y}^{-1 / 2}\left(P_{Y}^{T} \mathbf{Y}\right)$: We standardize the principal components to have unit variance.
- $P_{Y}\left(\Lambda_{Y}^{-1 / 2} P_{Y}^{T} \mathbf{Y}\right)$: We rotate the standardized PCs using a transformation that only involves Σ_{Y}.
- $E^{T}\left(P_{Y} \Lambda_{Y}^{-1 / 2} P_{Y}^{T} \mathbf{Y}\right)$: We rotate the result using a transformation that involves the whole covariance matrix Σ.

Example i

- Let's go back to the covariance matrix at the beginning of this slide deck:

$$
\Sigma=\left(\begin{array}{cccc}
1.0 & 0.4 & 0.5 & 0.6 \\
0.4 & 1.0 & 0.3 & 0.4 \\
0.5 & 0.3 & 1.0 & 0.2 \\
0.6 & 0.4 & 0.2 & 1.0
\end{array}\right) .
$$

Large sample inference

Test of independence i

- Recall what we said at the outset: CCA trys to explain the covariance $\operatorname{Cov}(\mathbf{Y}, \mathbf{X})$.
- If there is no correlation between \mathbf{Y}, \mathbf{X}, then $\Sigma_{Y X}=0$.
- In particular, $a^{T} \Sigma_{Y X} b=0$ for any choice of $a \in \mathbb{R}^{p}, b \in \mathbb{R}^{q}$, and therefore all canonical correlations are equal to 0 .
- To test for independence between \mathbf{Y} and \mathbf{X}, we will use a likelihood ratio test.

LRT for $\Sigma_{Y X}=0 \mathbf{i}$

Let $\left(\mathbf{Y}_{i}, \mathbf{X}_{i}\right), i=1, \ldots, n$, be a random sample from a normal distribution $N_{p+q}(\mu, \Sigma)$, with

$$
\Sigma=\left(\begin{array}{cc}
\Sigma_{Y} & \Sigma_{Y X} \\
\Sigma_{X Y} & \Sigma_{X}
\end{array}\right)
$$

Let S_{Y}, S_{X} be the sample covariances of $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$, respectively, and let S_{n} be the $p+q$-dimensional sample covariance of $\left(\mathbf{Y}_{i}, \mathbf{X}_{i}\right)$.

LRT for $\Sigma_{Y X}=0$ if

Then the likelihood ratio test for $H_{0}: \Sigma_{Y X}=0$ rejects H_{0} for large values of

$$
-2 \log \Lambda=n \log \left(\frac{\left|S_{Y}\right|\left|S_{X}\right|}{\left|S_{n}\right|}\right)=-n \log \prod_{i=1}^{p}\left(1-\hat{\rho}_{i}^{2}\right),
$$

where $\hat{\rho}_{1}, \ldots, \hat{\rho}_{p}$ are the sample canonical correlations.

Null distribution

1. For large n, the statistic $-2 \log \Lambda$ is approximately chi-square with degrees of freedom equal to

$$
\left(\frac{(p+q)(p+q+1)}{2}\right)-\left(\frac{p(p+1)}{2}+\frac{q(q+1)}{2}\right)=p q
$$

2. Bartlett's correction uses a different statistic (but the same null distribution):

$$
-\left(n-1-\frac{1}{2}(p+q+1)\right) \log \prod_{i=1}^{p}\left(1-\hat{\rho}_{i}^{2}\right)
$$

Example i

- We will look at a different example, this time from the field of vegetation ecology.
- We have two datasets:
- varechem: 14 chemical measurements from the soil.
- varespec: 44 estimated cover values for lichen species.
- The data has 24 observations.
- For more details, see Väre, H., Ohtonen, R. and Oksanen, J. (1995) Effects of reindeer grazing on understorey vegetation in dry Pinus sylvestris forests. Journal of Vegetation Science 6, 523-530.

Example if

library(vegan)
data(varespec)
data(varechem)
\# There are too many variables in varespec
\# Let's pick first 10
Y <- varespec \%>\%
select (Callvulg:Diphcomp) \%>\%
as.matrix

Example ifi

\# The help page in ‘vegan` suggests a better
\# chemical model
X <- varechem \%>\% model.matrix (~ Al + P*(K + Baresoil) - 1, data = .)
decomp <- cancor $(x=X, y=Y)$
n <- nrow (X)
(LRT <- -n*log(prod(1 - decomp\$cor~2)))

Example iv

```
## [1] 156
p <- min(ncol(X), ncol(Y))
q <- max(ncol(X), ncol(Y))
LRT > qchisq(0.95, df = p*q)
```

\#\# [1] TRUE

Example v

$$
\begin{aligned}
& \text { LRT_bart <- -(n - } 1-0.5 *(p+q+1)) * \\
& \quad \log \left(\operatorname{prod}\left(1-\operatorname{decomp} \$ \operatorname{cor}^{\sim} 2\right)\right) \\
& c(\text { "Large Sample" }=\text { LRT }, \\
& \quad \text { "Bartlett" }=\text { LRT_bart })
\end{aligned}
$$

\#\# Large Sample	Bartlett	
$\# \#$	156	94

LRT_bart > qchisq(0.95, df $=\mathrm{p} * \mathrm{q})$
\#\# [1] TRUE

Sequential inference

- The LRT above was for independence, i.e. $\Sigma_{Y X}=0$.
- Given our description of CCA above, this test is equivalent to having all canonical correlations being equal to 0 .

$$
\Sigma_{Y X}=0 \Longleftrightarrow \rho_{1}=\cdots=\rho_{p}=0
$$

- If we reject the null hypothesis, it is natural to ask how many canonical correlations are nonzero.
- Recall that by design $\rho_{1} \geq \cdots \geq \rho_{p}$. We thus get a sequence of null hypotheses:

$$
H_{0}^{k}: \rho_{1} \neq 0, \ldots, \rho_{k} \neq 0, \rho_{k+1}=\cdots=\rho_{p}=0
$$

Sequential inference ii

- We can test the k-th hypothesis using a truncated version of the likelihood ratio test statistic:

$$
L R T_{k}=-\left(n-1-\frac{1}{2}(p+q+1)\right) \log \prod_{i=k+1}^{p}\left(1-\hat{\rho}_{i}^{2}\right),
$$

where its null distribution is approximately chi-square on $(p-k)(q-k)$ degrees of freedom.

Example (cont'd)

\# We can get the truncated LRTs in one go
(log_ccs <- rev(log(cumprod(1-rev(decomp\$cor)~2))))
\#\# [1] -6.513 -4.002 $-2.259-1.011-0.262-0.073$
(LRTs <- - $\left.(\mathrm{n}-1-0.5 *(\mathrm{p}+\mathrm{q}+1)) * \log _{\mathbf{c}} \mathrm{ccs}\right)$
\#\# [1] $94.4 \quad 58.0 \quad 32.714 .7 \quad 3.8 \quad 1.1$

Example (cont'd) if

$k_{\text {_seq }}^{<-} \operatorname{seq}(0, p-1)$
LRTs > qchisq(0.95,

$$
\left.d f=\left(p-k_{-} s e q\right) *\left(q-k_{-} s e q\right)\right)
$$

\#\# [1] TRUE FALSE FALSE FALSE FALSE FALSE
\# We only reject the first null hypothesis
\# of independence

Example (cont'd) iif

Summary

- CCA is a dimension reduction method like PCA
- But we are reducing the dimension of two datasets jointly.
- Instead of maximising variance, we maximise correlation.
- The goal is to explain the association between \mathbf{Y} and \mathbf{X}.
- Unlike MLR, both datasets are treated equally.
- All visualization methods we discussed in the context of PCA (e.g. component plots, loading plots, biplots) are available for CCA.
- See the R package vegan.
- Limitation: CCA performs poorly when p and/or q are close to n.

