Manifold Learning

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Dimension reduction redux i

- Recall Pearson's approach to PCA: best approximation of the data by a linear manifold.
- Let's unpack this definition:
 - We're looking for a linear subspace of \mathbb{R}^p of dimension k.
 - For a fixed k, we want to minimise the error when projecting onto the linear subspace.
 - We can also identify that subspace with ℝ^k (e.g. for visualisation).

Dimension reduction redux ii

- Manifold learning is a nonlinear approach to dimension reduction, where:
 - We assume the data lies on (or close to) a nonlinear manifold of dimension k in R^p.
 - We project the data from the manifold to \mathbb{R}^k .
- There are two main classes of methods:
 - Distance preserving (e.g. lsomap);
 - Topology preserving (e.g. Locally linear embedding)

- Roughly speaking, manifolds of dimension k are geometric objects that locally look like R^k.
 - Every point on the manifold has an open neighbourhood that is equivalent to an open ball in R^k.
- Examples in \mathbb{R}^p include any curve, the (p-1)-dimensional sphere, or any linear subspace.
- Some manifolds have boundaries (e.g. a cylinder) or corners (e.g. a cube).

n <- 1000 F1 <- runif(n, 0, 10) F2 <- runif(n, -1, 1)

X <- F1 * cos(F1) Y <- F2 Z <- F1 * sin(F1)

```
library(scatterplot3d)
library(colorspace)
colours <- cut(F1, breaks = seq(0, 10),
               labels = diverging_hcl(10))
par(mfrow = c(1, 2))
scatterplot3d(X, Y, Z, pch = 19, asp = 1,
              color = colours)
scatterplot3d(X, Y, Z, pch = 19, asp = 1,
              color = colours, angle = 80)
```

Swiss roll iii

Let's see if PCA can unroll the Swiss roll
decomp <- prcomp(cbind(X, Y, Z))</pre>

- To study the nonlinear dimension reduction methods in this lecture, we will restrict our attention to the digit 2 in the MNIST dataset.
- The reason: we can think of the different shapes of 2 as "smooth deformations" of one another.
 - This would work for other digits too (e.g. 6, 9, 8), but not all (e.g. 4, 7).

```
library(dslabs)
library(tidyverse)
```

```
mnist <- read_mnist()</pre>
```

data <- mnist\$train\$images[mnist\$train\$labels == 2,]</pre>

```
par(mfrow = c(1, 2))
# With crossing
matrix(data[1,], ncol = 28)[, 28:1] %>%
  image(col = gray.colors(12, rev = TRUE),
        axes = FALSE, asp = 1)
# Without crossing
matrix(data[4,], ncol = 28)[, 28:1] %>%
  image(col = gray.colors(12, rev = TRUE),
        axes = FALSE, asp = 1)
```

Example iii


```
decomp <- prcomp(data)
decomp$x[,1:2] %>%
   as.data.frame() %>%
   ggplot(aes(PC1, PC2)) +
   geom_point(alpha = 0.5) +
   theme_minimal()
```

Example v

Example vi

First PC par(mfrow = c(1, 2))index_right <- which.max(decomp\$x[,1])</pre> matrix(data[index right,], ncol = 28)[, 28:1] %>% image(col = gray.colors(12, rev = TRUE), axes = FALSE, asp = 1) index left <- which.min(decomp\$x[,1])</pre> matrix(data[index left,], ncol = 28)[, 28:1] %>% image(col = gray.colors(12, rev = TRUE), axes = FALSE, asp = 1)

Example vii

Example viii

Second PC par(mfrow = c(1, 2))index top <- which.max(decomp\$x[,2])</pre> matrix(data[index top,], ncol = 28)[, 28:1] %>% image(col = gray.colors(12, rev = TRUE), axes = FALSE, asp = 1) index bottom <- which.min(decomp\$x[,2]) matrix(data[index bottom,], ncol = 28)[, 28:1] %>% image(col = gray.colors(12, rev = TRUE), axes = FALSE, asp = 1)

Example ix

Example x

PC1=-1446 PC1=-906 PC1=-718 PC1=-546 PC1=-415 PC1=-290 PC1=-170 PC1=-57 PC1=89 PC1=242 PC1=409 PC1=597 PC1=773 PC1=983 PC1=1574

Example xi

Isomap

Isomap

• Let's look at the algorithm and study each step separately.

Basic algorithm

- Create a graph G from the data, where each data point is a node, and two nodes are connected if they are "neighbours".
- 2. Each edge gets a weight corresponding to the Euclidean distance between the two data points.
- Create a distance matrix Δ, where the (i, j)-th element is the length of the shortest path in G between the data points corresponding to nodes i and j.
- 4. Perform metric Multidimensional Scaling on Δ to obtain the projection onto a lower dimensional subspace.

Definition of neighbourhood

- Two ways of defining the neighbours of a point **Y**:
 - For an integer K ≥ 1, we could look at the K-nearest neighbours, i.e. the K points Y₁,..., Y_K that are closest (in Euclidean distance) to Y.
 - For a real number ε > 0, we could look at all points
 Y₁,..., Y_{n(ε)} whose distance from Y is less than ε.
- Note: The first definition guarantees that every point has neighbours, whereas you could get unconnected points using the second definition.
- You could also use a hybrid of both approaches where you take the K-nearest neighbours, but discard neighbours that are "too far away".

Shortest path distance i

- Once we have our weighted graph G (i.e. nodes represent data points, edges represent neighbours, weights are Euclidean distances), we can compute the length of any path from Y_i to Y_j by summing the weights of all the edges along the path.
- We then define a **distance** function on \mathcal{G} by

 $\Delta_{ij} = \min \left\{ \text{Length of path } \gamma \mid \gamma \text{ is a path from } \mathbf{Y}_i \text{ to } \mathbf{Y}_j \right\}.$

- There are efficient algorithms for computing this distance for any weighted graph:
 - Dijkstra's algorithm;
 - Floyd–Warshall algorithm.
- For more details about these algorithms, take a course on graph theory!

Recall the algorithm for MDS.

Algorithm (MDS) Input: Δ ; Output: \tilde{X}

- 1. Create the matrix D containing the square of the entries in $\Delta.$
- 2. Create S by centering both the rows and the columns and multiplying by $-\frac{1}{2}.$
- 3. Compute the eigenvalue decomposition $S = U\Lambda U^T$.
- 4. Let \tilde{X} be the matrix containing the first r columns of $\Lambda^{1/2}U^T.$

library(dimRed)

2019-11-21 17:24:55: Isomap START

2019-11-21 17:24:55: constructing knn graph

2019-11-21 17:24:55: calculating geodesic distances

2019-11-21 17:24:55: Classical Scaling

```
isomap_sr@data@data %>%
    plot(col = as.character(colours), pch = 19)
```

Swiss roll iii

iso 1

2019-11-21 17:24:55: Isomap START

2019-11-21 17:24:55: constructing knn graph

2019-11-21 17:25:15: calculating geodesic distances

2019-11-21 17:25:28: Classical Scaling

```
isomap_res@data %>%
  as.data.frame() %>%
  ggplot(aes(iso.1, iso.2)) +
  geom_point(alpha = 0.5) +
  theme_minimal()
```

Example iii

Example iv

ISO1=-6638 ISO1=-4258 ISO1=-3369 ISO1=-2722 ISO1=-2114 ISO1=-1504 ISO1=-818 ISO1=-150 ISO1=548 ISO1=1322 ISO1=4558 ISO1=2017 ISO1=2762 ISO1=3589 ISO1=6831

Intuition i

- The reason why Isomap works is because the shortest path distance approximates the **geodesic** distance on the manifold
 - "Train tracks distance"
- If we embed the weighted graph in R^p, with each nodes at its corresponding data point, and each edge having length equal to the Euclidean distance, we can see the graph as a scaffold of the manifold.
- As we increase the sample size, the scaffold "converges" to the actual manifold.

Intuition ii

Tenenbaum et al. Science (2000)

Further examples i

Figure 1

Further examples ii

- Advantages:
 - Simple extension of MDS
 - Preserves distance relationship on the manifold
- Disadvantages:
 - Computing the shortest path distance can be expensive with many data points
 - Doesn't work well with all manifolds (e.g. it fails when the underlying manifold has holes or many folds)

Locally Linear Embedding

- In Isomap, we estimated pairwise distances by constraining them to be close to the underlying manifold.
 - But we still computed all $O(n^2)$ distances...
- LLE instead focuses on *local* stuctures in the data.
- In particular, it assumes that a linear approximation of these local structures will give a good approximation of the global (nonlinear) structure.

- The motivation for LLE is as follows:
 - A given point should be well approximated by a linear combination of its neighbours.
 - We want those linear combinations weights to be **invariant** to rotation, scaling, and translation.
 - Therefore, the same weights should be used if we replace the original data with a lower dimensional representation.

- First, some notation:
 - $\mathbf{Y}_i, i = 1, \dots, n$ are the *p*-dimensional data points.
 - $\mathbf{X}_i, i = 1, \dots, n$ are their k-dimensional representation.
 - If \mathbf{Y}_j is a neighbour of \mathbf{Y}_i , we write $j \in \mathcal{N}(i)$.
 - W is an n × n matrix of weights such that w_{ij} = 0 if
 Y_j is not a neighbour of Y_i.
 - We also impose a constraint that ∑ⁿ_{j=1} w_{ij} = 1 for all i, i.e. the rows of W sum to 1.

Algorithm ii

LLE Algorithm Input: $\mathbf{Y}_i \in \mathbb{R}^p, i = 1, \dots, n$. Output: $\mathbf{X}_i \in \mathbb{R}^k, i = 1, \dots, n$.

1. Estimate W by minimising the *reconstruction error*:

$$\hat{W} = \operatorname*{arg\,min}_{W} \sum_{i=1}^{n} \|\mathbf{Y}_{i} - \sum_{j=1}^{n} w_{ij} \mathbf{Y}_{j}\|^{2}.$$

With W fixed, estimate X₁,..., X_n by minimising the embedding cost:

$$\hat{\mathbb{X}} = \underset{\mathbb{X}}{\operatorname{arg\,min}} \sum_{i=1}^{n} \|\mathbf{X}_{i} - \sum_{j=1}^{n} \hat{w}_{ij} \mathbf{X}_{j}\|^{2}.$$

Reconstruction error i

• Let
$$\mathcal{E}_i(W) = \|\mathbf{Y}_i - \sum_{j=1}^n w_{ij}\mathbf{Y}_j\|^2$$
.

- Recall that we would like invariance under rotation, scaling, and translation.
- Let α be a scalar. We have

$$\|\alpha \mathbf{Y}_i - \sum_{j=1}^n w_{ij} \alpha \mathbf{Y}_j\|^2 = \alpha^2 \|\mathbf{Y}_i - \sum_{j=1}^n w_{ij} \mathbf{Y}_j\|^2,$$

and therefore the minimiser of $\mathcal{E}_i(W)$ is the same after rescaling all points by α .

- Next, let T be a $p \times p$ orthogonal matrix. We have

Reconstruction error iii

$$\begin{aligned} |T\mathbf{Y}_{i} - \sum_{j=1}^{n} w_{ij} T\mathbf{Y}_{j}||^{2} &= \left\| T \left(\mathbf{Y}_{i} - \sum_{j=1}^{n} w_{ij} \mathbf{Y}_{j} \right) \right\|^{2} \\ &= \left(T \left(\mathbf{Y}_{i} - \sum_{j=1}^{n} w_{ij} \mathbf{Y}_{j} \right) \right)^{T} \left(T \left(\mathbf{Y}_{i} - \sum_{j=1}^{n} w_{ij} \mathbf{Y}_{j} \right) \right) \\ &= \left(\mathbf{Y}_{i} - \sum_{j=1}^{n} w_{ij} \mathbf{Y}_{j} \right)^{T} T^{T} T \left(\mathbf{Y}_{i} - \sum_{j=1}^{n} w_{ij} \mathbf{Y}_{j} \right) \\ &= \left(\mathbf{Y}_{i} - \sum_{j=1}^{n} w_{ij} \mathbf{Y}_{j} \right)^{T} \left(\mathbf{Y}_{i} - \sum_{j=1}^{n} w_{ij} \mathbf{Y}_{j} \right) \\ &= \left(\mathbf{Y}_{i} - \sum_{j=1}^{n} w_{ij} \mathbf{Y}_{j} \right)^{T} \left(\mathbf{Y}_{i} - \sum_{j=1}^{n} w_{ij} \mathbf{Y}_{j} \right) = \mathcal{E}_{i}(W). \end{aligned}$$

• Finally, let $\mu \in \mathbb{R}^p$. We have

Reconstruction error v

$$\begin{aligned} \|(\mathbf{Y}_{i} - \mu) - \sum_{j=1}^{n} w_{ij}(\mathbf{Y}_{j} - \mu)\|^{2} \\ &= \|\mathbf{Y}_{i} - \mu - \sum_{j=1}^{n} w_{ij}\mathbf{Y}_{j} + \sum_{j=1}^{n} w_{ij}\mu\|^{2} \\ &= \|\mathbf{Y}_{i} - \mu - \sum_{j=1}^{n} w_{ij}\mathbf{Y}_{j} + \mu \sum_{j=1}^{n} w_{ij}\|^{2} \\ &= \|\mathbf{Y}_{i} - \mu - \sum_{j=1}^{n} w_{ij}\mathbf{Y}_{j} + \mu\|^{2} \\ &= \|\mathbf{Y}_{i} - \sum_{j=1}^{n} w_{ij}\mathbf{Y}_{j}\|^{2} = \mathcal{E}_{i}(W). \end{aligned}$$

- In other words, invariance comes from the definition of reconstruction error and the constraint that weights sum to 1.
- How to minimise \$\mathcal{E}_i(W)\$? Assume that the neighbours of \$\mathbf{Y}_i\$ are \$\mathbf{Y}_{(1)}, \ldots, \mathbf{Y}_{(r)}\$. We then have

Reconstruction error vii

$$\mathcal{E}_{i}(W) = \|\mathbf{Y}_{i} - \sum_{j=1}^{n} w_{ij}\mathbf{Y}_{j}\|^{2}$$

$$= \|\mathbf{Y}_{i} - \sum_{j=1}^{r} w_{i(j)}\mathbf{Y}_{(j)}\|^{2}$$

$$= \left\|\sum_{j=1}^{r} w_{i(j)}\left(\mathbf{Y}_{i} - \mathbf{Y}_{(j)}\right)\right\|^{2}$$

$$= \sum_{j=1}^{r} \sum_{k=1}^{r} w_{i(j)}w_{i(k)}\left(\mathbf{Y}_{i} - \mathbf{Y}_{(j)}\right)^{T}\left(\mathbf{Y}_{i} - \mathbf{Y}_{(k)}\right).$$

51

Reconstruction error viii

- Let G(i) be the matrix whose (j, k)-th entry is equal to $\left(\mathbf{Y}_{i} \mathbf{Y}_{(j)}\right)^{T} \left(\mathbf{Y}_{i} \mathbf{Y}_{(k)}\right)$.
- Using the method of Lagrange multipliers, we can minimise *E_i(W)* by solving the linear system

$$G\mathbf{w} = \mathbf{1}$$

and normalising the weights so they add up to 1.

• If G is singular (or nearly singular), you can add a small constant to the diagonal to regularise it.

```
n <- 1000
data_knn <- data[seq_len(n),]</pre>
```

```
# Compute distances
Delta <- dist(data_knn)</pre>
```

```
# Take 5-NN to first obs.
neighbours <- order(Delta[seq_len(n-1)])[1:5]</pre>
```

```
main_obs <- data_knn[1,]
nb_data <- data_knn[neighbours,]</pre>
```

Example iii

NN 1

NN 2

NN 3

NN 4

Center neighbours around main obs
nb_data_c <- sweep(nb_data, 2, main_obs)
Local cov matrix
Gmat <- tcrossprod(nb_data_c)</pre>

```
# Find weights
w_vect <- solve(Gmat, rep(1, 5))
w_vect <- w_vect/sum(w_vect)</pre>
```

```
# Compare original with approx.
approx <- drop(w vect %*% nb data)
par(mfrow = c(1, 2))
matrix(main obs, ncol = 28)[, 28:1] %>%
  image(col = gray.colors(12, rev = TRUE),
        axes = FALSE, main = "Original", asp = 1)
matrix(approx, ncol = 28)[, 28:1] %>%
  image(col = gray.colors(12, rev = TRUE),
        axes = FALSE, main = "Approx. (5 NN)", asp = 1
```

Example vi

Original

Approx. (5 NN)

Example vii

Original

Approx. (25 NN)

Embedding cost i

- Let $\Phi(\mathbb{X}) = \sum_{i=1}^n \|\mathbf{X}_i \sum_{j=1}^n w_{ij} \mathbf{X}_j\|^2$.
- As we did earlier, we can rewrite this:

$$\sum_{i=1}^{n} \|\mathbf{X}_{i} - \sum_{j=1}^{n} w_{ij} \mathbf{X}_{j}\|^{2} = \sum_{i=1}^{n} \left\| \sum_{j=1}^{n} w_{ij} \left(\mathbf{X}_{i} - \mathbf{X}_{j} \right) \right\|^{2}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} w_{ik} \left(\mathbf{X}_{i} - \mathbf{X}_{j} \right)^{T} \left(\mathbf{X}_{i} - \mathbf{X}_{k} \right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} m_{ij} \mathbf{X}_{i}^{T} \mathbf{X}_{j}.$$

Embedding cost ii

- Above, m_{ij} is the (i, j)-th element of the matrix M, where

$$M = (I - W)^T (I - W).$$

- Key observation: *M* is sparse (i.e. lots of zeroes), symmetric, and positive semidefinite.
- If we impose some restrictions on the projections X_i (i.e. mean zero, identity covariance matrix), we can minimise Φ(X) subject to these constraints using Lagrange multipliers.
- The smallest eigenvalue will be zero; we can discard its corresponding eigenvector.

 The eigenvectors corresponding to the next k smallest eigenvalues give us our matrix X that minimises the embedding cost.

- Since *M* is sparse, we can compute these eigenvectors very efficiently using specialised algorithms.
- Since we obtained the data matrix X as eigenvectors of M, it may seem that we did a linear dimension reduction.
 However, the sparsity of W (and therefore M) is what gives us our *nonlinear* dimension reduction.

- ## finding neighbours
- ## calculating weights
- ## computing coordinates

```
lle_sr@data@data %>%
    plot(col = as.character(colours), pch = 19)
```


- ## finding neighbours
- ## calculating weights
- ## computing coordinates

```
lle_res@data %>%
  as.data.frame() %>%
  ggplot(aes(LLE1, LLE2)) +
  geom_point(alpha = 0.5) +
  theme_minimal()
```

Example iii

Example iv

ISO1=-4 IS01=-1 ISO1=-1 IS01=-1 ISO1=-1 ISO1=0 ISO1=0 ISO1=0 ISO1=0 ISO1=0 IS01=1 ISO1=1 ISO1=5 ISO1=1 ISO1=1

- Advantages:
 - Preserves local structure
 - Less computationally expensive than Isomap
- Disadvantages:
 - Less accurate in preserving global structure
 - Doesn't work well with all manifolds (e.g. it fails when the underlying manifold is nonconvex)