Manifold Learning

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Dimension reduction redux i

- Recall Pearson's approach to PCA: best approximation of the data by a linear manifold.
- Let's unpack this definition:
- We're looking for a linear subspace of \mathbb{R}^{p} of dimension k.
- For a fixed k, we want to minimise the error when projecting onto the linear subspace.
- We can also identify that subspace with \mathbb{R}^{k} (e.g. for visualisation).

Dimension reduction redux if

- Manifold learning is a nonlinear approach to dimension reduction, where:
- We assume the data lies on (or close to) a nonlinear manifold of dimension k in \mathbb{R}^{p}.
- We project the data from the manifold to \mathbb{R}^{k}.
- There are two main classes of methods:
- Distance preserving (e.g. Isomap);
- Topology preserving (e.g. Locally linear embedding)

Manifolds-Definition

- Roughly speaking, manifolds of dimension k are geometric objects that locally look like \mathbb{R}^{k}.
- Every point on the manifold has an open neighbourhood that is equivalent to an open ball in \mathbb{R}^{k}.
- Examples in \mathbb{R}^{p} include any curve, the ($p-1$)-dimensional sphere, or any linear subspace.
- Some manifolds have boundaries (e.g. a cylinder) or corners (e.g. a cube).

Swiss roll i

```
n <- 1000
F1 <- runif(n, 0, 10)
F2 <- runif(n, -1, 1)
X <- F1 * cos(F1)
Y <- F2
Z <- F1 * sin(F1)
```


Swiss roll if

library(scatterplot3d)
library(colorspace)
colours <- cut(F1, breaks = seq(0, 10),
labels = diverging_hcl(10))
par(mfrow $=c(1,2))$
scatterplot3d(X, Y, Z, pch = 19, asp = 1,
color = colours)
scatterplot3d(X, Y, Z, pch = 19, asp = 1,

$$
\text { color }=\text { colours, angle = 80) }
$$

Swiss roll iit

Swiss roll iv

\# Let's see if PCA can unroll the Swiss roll decomp <- prcomp(cbind(X, Y, Z))
plot(decomp\$x[,1:2],
col = as.character(colours), pch = 19)

Swiss roll v

MNIST data revisited

- To study the nonlinear dimension reduction methods in this lecture, we will restrict our attention to the digit 2 in the MNIST dataset.
- The reason: we can think of the different shapes of 2 as "smooth deformations" of one another.
- This would work for other digits too (e.g. 6, 9, 8), but not all (e.g. 4, 7).

Example i

library(dslabs)
library(tidyverse)
mnist <- read_mnist()
data <- mnist\$train\$images [mnist\$train\$labels == 2,]

Example ii

```
par(mfrow = c(1, 2))
# With crossing
matrix(data[1,], ncol = 28)[ , 28:1] %>%
    image(col = gray.colors(12, rev = TRUE),
        axes = FALSE, asp = 1)
# Without crossing
matrix(data[4,], ncol = 28)[ , 28:1] %>%
    image(col = gray.colors(12, rev = TRUE),
    axes = FALSE, asp = 1)
```

$$
22
$$

Example iv

decomp <- prcomp(data)
decomp\$x[,1:2] \%>\%
as.data.frame() \%>\%
ggplot(aes(PC1, PC2)) +
geom_point (alpha $=0.5)$ +
theme_minimal()

Example v

Example vi

```
# First PC
par(mfrow = c(1, 2))
index_right <- which.max(decomp$x[,1])
matrix(data[index_right,], ncol = 28)[ , 28:1] %>%
    image(col = gray.colors(12, rev = TRUE),
    axes = FALSE, asp = 1)
index_left <- which.min(decomp$x[,1])
matrix(data[index_left,], ncol = 28)[ , 28:1] %>%
    image(col = gray.colors(12, rev = TRUE),
    axes = FALSE, asp = 1)
```

$$
22
$$

Example vifi

\# Second PC
par(mfrow $=c(1,2))$
index_top <- which. $\max ($ decomp $\$ \mathrm{x}[, 2])$
matrix (data[index_top,], ncol = 28) [, 28:1] \%>\%

$$
\begin{gathered}
\text { image }(\text { col }=\text { gray. colors }(12, \text { rev }=\text { TRUE }), \\
\text { axes }=\text { FALSE, asp }=1)
\end{gathered}
$$

index_bottom <- which.min(decomp\$x[,2])
matrix(data[index_bottom,], ncol = 28) [, 28:1] \%>\% image (col = gray.colors(12, rev = TRUE), axes = FALSE, asp = 1)

$$
22
$$

Example x

$$
\begin{aligned}
& \begin{array}{ll}
2 & 2 \\
\hline
\end{array} \\
& \begin{array}{llll}
2 & \overline{2} & \overline{2} & \cdots
\end{array} \\
& \begin{array}{llllll}
-2 & - & - & - & - & 2
\end{array}
\end{aligned}
$$

Example xi

Isomap

Isomap

- Let's look at the algorithm and study each step separately.

Basic algorithm

1. Create a graph \mathcal{G} from the data, where each data point is a node, and two nodes are connected if they are "neighbours".
2. Each edge gets a weight corresponding to the Euclidean distance between the two data points.
3. Create a distance matrix Δ, where the (i, j)-th element is the length of the shortest path in \mathcal{G} between the data points corresponding to nodes i and j.
4. Perform metric Multidimensional Scaling on Δ to obtain the projection onto a lower dimensional subspace.

Definition of neighbourhood

- Two ways of defining the neighbours of a point Y:
- For an integer $K \geq 1$, we could look at the K-nearest neighbours, i.e. the K points $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{K}$ that are closest (in Euclidean distance) to \mathbf{Y}.
- For a real number $\epsilon>0$, we could look at all points $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n(\epsilon)}$ whose distance from \mathbf{Y} is less than ϵ.
- Note: The first definition guarantees that every point has neighbours, whereas you could get unconnected points using the second definition.
- You could also use a hybrid of both approaches where you take the K-nearest neighbours, but discard neighbours that are "too far away".

Shortest path distance

- Once we have our weighted graph \mathcal{G} (i.e. nodes represent data points, edges represent neighbours, weights are Euclidean distances), we can compute the length of any path from \mathbf{Y}_{i} to \mathbf{Y}_{j} by summing the weights of all the edges along the path.
- We then define a distance function on \mathcal{G} by
$\Delta_{i j}=\min \left\{\right.$ Length of path $\gamma \mid \gamma$ is a path from \mathbf{Y}_{i} to $\left.\mathbf{Y}_{j}\right\}$.

Shortest path distance ii

- There are efficient algorithms for computing this distance for any weighted graph:
- Dijkstra's algorithm;
- Floyd-Warshall algorithm.
- For more details about these algorithms, take a course on graph theory!

Multidimensional Scaling

Recall the algorithm for MDS.

Algorithm (MDS)

Input: Δ; Output: \tilde{X}

1. Create the matrix D containing the square of the entries in Δ.
2. Create S by centering both the rows and the columns and multiplying by $-\frac{1}{2}$.
3. Compute the eigenvalue decomposition $S=U \Lambda U^{T}$.
4. Let \tilde{X} be the matrix containing the first r columns of $\Lambda^{1 / 2} U^{T}$.

Swiss roll i

library(dimRed)
isomap_sr <- embed(cbind(X, Y, Z), "Isomap", knn = 10,

$$
\text { ndim }=2 \text {) }
$$

\#\# 2019-11-21 17:24:55: Isomap START
\#\# 2019-11-21 17:24:55: constructing knn graph
\#\# 2019-11-21 17:24:55: calculating geodesic distances

Swiss roll it

\#\# 2019-11-21 17:24:55: Classical Scaling
isomap_sr@data@data \%>\%
plot(col = as.character(colours), pch = 19)

Swiss roll iit

Example i

isomap_res <- embed(data, "Isomap", knn = 10, ndim $=2$)
\#\# 2019-11-21 17:24:55: Isomap START
\#\# 2019-11-21 17:24:55: constructing knn graph
\#\# 2019-11-21 17:25:15: calculating geodesic distances
\#\# 2019-11-21 17:25:28: Classical Scaling

Example if

isomap_res@data \%>\%
as.data.frame() \%>\%
ggplot(aes(iso.1, iso.2)) +
geom_point (alpha $=0.5)+$
theme_minimal()

Example iif

$$
\begin{array}{lllll}
\overline{2} & \overline{2} & \overline{2} & \overline{2} & \overline{2} \\
\overline{2} & \overline{2} & \overline{2} & \overline{2} & \overline{2} \\
\overline{2} & \overline{2} & \overline{2} & \overline{2} & \overline{2}
\end{array}
$$

Intuition i

- The reason why Isomap works is because the shortest path distance approximates the geodesic distance on the manifold
- "Train tracks distance"
- If we embed the weighted graph in \mathbb{R}^{p}, with each nodes at its corresponding data point, and each edge having length equal to the Euclidean distance, we can see the graph as a scaffold of the manifold.
- As we increase the sample size, the scaffold "converges" to the actual manifold.

Intuition if

Tenenbaum et al. Science (2000)

Further examples i

Figure 1

Further examples if

Figure 2

Comments

- Advantages:
- Simple extension of MDS
- Preserves distance relationship on the manifold
- Disadvantages:
- Computing the shortest path distance can be expensive with many data points
- Doesn't work well with all manifolds (e.g. it fails when the underlying manifold has holes or many folds)

Locally Linear Embedding

Local vs. Global structure

- In Isomap, we estimated pairwise distances by constraining them to be close to the underlying manifold.
- But we still computed all $O\left(n^{2}\right)$ distances...
- LLE instead focuses on local stuctures in the data.
- In particular, it assumes that a linear approximation of these local structures will give a good approximation of the global (nonlinear) structure.

Preserving local structure

- The motivation for LLE is as follows:
- A given point should be well approximated by a linear combination of its neighbours.
- We want those linear combinations weights to be invariant to rotation, scaling, and translation.
- Therefore, the same weights should be used if we replace the original data with a lower dimensional representation.

Algorithm

- First, some notation:
- $\mathbf{Y}_{i}, i=1, \ldots, n$ are the p-dimensional data points.
- $\mathbf{X}_{i}, i=1, \ldots, n$ are their k-dimensional representation.
- If \mathbf{Y}_{j} is a neighbour of \mathbf{Y}_{i}, we write $j \in \mathcal{N}(i)$.
- W is an $n \times n$ matrix of weights such that $w_{i j}=0$ if \mathbf{Y}_{j} is not a neighbour of \mathbf{Y}_{i}.
- We also impose a constraint that $\sum_{j=1}^{n} w_{i j}=1$ for all i, i.e. the rows of W sum to 1 .

Algorithm if

LLE Algorithm
Input: $\mathbf{Y}_{i} \in \mathbb{R}^{p}, i=1, \ldots, n$.
Output: $\mathbf{X}_{i} \in \mathbb{R}^{k}, i=1, \ldots, n$.

1. Estimate W by minimising the reconstruction error:

$$
\hat{W}=\underset{W}{\arg \min } \sum_{i=1}^{n}\left\|\mathbf{Y}_{i}-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}\right\|^{2} .
$$

2. With \hat{W} fixed, estimate $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ by minimising the embedding cost:

$$
\hat{\mathbb{X}}=\underset{\mathbb{X}}{\arg \min } \sum_{i=1}^{n}\left\|\mathbf{X}_{i}-\sum_{j=1}^{n} \hat{w}_{i j} \mathbf{X}_{j}\right\|^{2} .
$$

Reconstruction error i

- Let $\mathcal{E}_{i}(W)=\left\|\mathbf{Y}_{i}-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}\right\|^{2}$.
- Recall that we would like invariance under rotation, scaling, and translation.
- Let α be a scalar. We have

$$
\left\|\alpha \mathbf{Y}_{i}-\sum_{j=1}^{n} w_{i j} \alpha \mathbf{Y}_{j}\right\|^{2}=\alpha^{2}\left\|\mathbf{Y}_{i}-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}\right\|^{2},
$$

and therefore the minimiser of $\mathcal{E}_{i}(W)$ is the same after rescaling all points by α.

Reconstruction error it

- Next, let T be a $p \times p$ orthogonal matrix. We have

Reconstruction error ifi

$$
\begin{aligned}
& \left\|T \mathbf{Y}_{i}-\sum_{j=1}^{n} w_{i j} T \mathbf{Y}_{j}\right\|^{2}=\left\|T\left(\mathbf{Y}_{i}-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}\right)\right\|^{2} \\
& =\left(T\left(\mathbf{Y}_{i}-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}\right)\right)^{T}\left(T\left(\mathbf{Y}_{i}-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}\right)\right) \\
& =\left(\mathbf{Y}_{i}-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}\right)^{T} T^{T} T\left(\mathbf{Y}_{i}-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}\right) \\
& =\left(\mathbf{Y}_{i}-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}\right)^{T}\left(\mathbf{Y}_{i}-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}\right)=\mathcal{E}_{i}(W) .
\end{aligned}
$$

Reconstruction error iv

- Finally, let $\mu \in \mathbb{R}^{p}$. We have

Reconstruction error

$$
\begin{aligned}
& \left\|\left(\mathbf{Y}_{i}-\mu\right)-\sum_{j=1}^{n} w_{i j}\left(\mathbf{Y}_{j}-\mu\right)\right\|^{2} \\
& \quad=\left\|\mathbf{Y}_{i}-\mu-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}+\sum_{j=1}^{n} w_{i j} \mu\right\|^{2} \\
& \quad=\left\|\mathbf{Y}_{i}-\mu-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}+\mu \sum_{j=1}^{n} w_{i j}\right\|^{2} \\
& \quad=\left\|\mathbf{Y}_{i}-\mu-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}+\mu\right\|^{2} \\
& \quad=\left\|\mathbf{Y}_{i}-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}\right\|^{2}=\mathcal{E}_{i}(W) .
\end{aligned}
$$

Reconstruction error vi

- In other words, invariance comes from the definition of reconstruction error and the constraint that weights sum to 1.
- How to minimise $\mathcal{E}_{i}(W)$? Assume that the neighbours of \mathbf{Y}_{i} are $\mathbf{Y}_{(1)}, \ldots, \mathbf{Y}_{(r)}$. We then have

Reconstruction error vif

$$
\begin{aligned}
\mathcal{E}_{i}(W) & =\left\|\mathbf{Y}_{i}-\sum_{j=1}^{n} w_{i j} \mathbf{Y}_{j}\right\|^{2} \\
& =\left\|\mathbf{Y}_{i}-\sum_{j=1}^{r} w_{i(j)} \mathbf{Y}_{(j)}\right\|^{2} \\
& =\left\|\sum_{j=1}^{r} w_{i(j)}\left(\mathbf{Y}_{i}-\mathbf{Y}_{(j)}\right)\right\|^{2} \\
& =\sum_{j=1}^{r} \sum_{k=1}^{r} w_{i(j)} w_{i(k)}\left(\mathbf{Y}_{i}-\mathbf{Y}_{(j)}\right)^{T}\left(\mathbf{Y}_{i}-\mathbf{Y}_{(k)}\right) .
\end{aligned}
$$

Reconstruction error viif

- Let $G(i)$ be the matrix whose (j, k)-th entry is equal to $\left(\mathbf{Y}_{i}-\mathbf{Y}_{(j)}\right)^{T}\left(\mathbf{Y}_{i}-\mathbf{Y}_{(k)}\right)$.
- Using the method of Lagrange multipliers, we can minimise $\mathcal{E}_{i}(W)$ by solving the linear system

$$
G \mathbf{w}=\mathbf{1}
$$

and normalising the weights so they add up to 1 .

- If G is singular (or nearly singular), you can add a small constant to the diagonal to regularise it.

Example i

n <- 1000
data_knn <- data[seq_len(n),]
\# Compute distances
Delta <- dist(data_knn)
\# Take 5-NN to first obs.
neighbours <- order(Delta[seq_len(n-1)]) [1:5]

Example if

main_obs <- data_knn[1,]
nb_data <- data_knn[neighbours,]

Example iif

$$
\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 &
\end{array}
$$

Example iv

```
# Center neighbours around main obs
nb_data_c <- sweep(nb_data, 2, main_obs)
# Local cov matrix
Gmat <- tcrossprod(nb_data_c)
# Find weights
w_vect <- solve(Gmat, rep(1, 5))
w_vect <- w_vect/sum(w_vect)
```


Example

```
# Compare original with approx.
approx <- drop(w_vect %*% nb_data)
par(mfrow = c(1, 2))
```

matrix(main_obs, ncol = 28) [, 28:1] \%>\%
image (col = gray.colors(12, rev = TRUE),
axes = FALSE, main = "Original", asp = 1)
matrix(approx, ncol = 28)[, $28: 1] \%>\%$
image (col = gray.colors(12, rev = TRUE),
axes = FALSE, main = "Approx. (5 NN)", asp = 1)

$$
22
$$

Example vii

Original

Approx. (25 NN)

Embedding cost

- Let $\Phi(\mathbb{X})=\sum_{i=1}^{n}\left\|\mathbf{X}_{i}-\sum_{j=1}^{n} w_{i j} \mathbf{X}_{j}\right\|^{2}$.
- As we did earlier, we can rewrite this:

$$
\begin{aligned}
\sum_{i=1}^{n}\left\|\mathbf{X}_{i}-\sum_{j=1}^{n} w_{i j} \mathbf{X}_{j}\right\|^{2} & =\sum_{i=1}^{n}\left\|\sum_{j=1}^{n} w_{i j}\left(\mathbf{X}_{i}-\mathbf{X}_{j}\right)\right\|^{2} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} w_{i k}\left(\mathbf{X}_{i}-\mathbf{X}_{j}\right)^{T}\left(\mathbf{X}_{i}-\mathbf{X}_{k}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} m_{i j} \mathbf{X}_{i}^{T} \mathbf{X}_{j}
\end{aligned}
$$

Embedding cost ii

- Above, $m_{i j}$ is the (i, j)-th element of the matrix M, where

$$
M=(I-W)^{T}(I-W)
$$

- Key observation: M is sparse (i.e. lots of zeroes), symmetric, and positive semidefinite.
- If we impose some restrictions on the projections \mathbf{X}_{i} (i.e. mean zero, identity covariance matrix), we can minimise $\Phi(\mathbb{X})$ subject to these constraints using Lagrange multipliers.
- The smallest eigenvalue will be zero; we can discard its corresponding eigenvector.

Embedding cost iif

- The eigenvectors corresponding to the next k smallest eigenvalues give us our matrix \mathbb{X} that minimises the embedding cost.

Comments

- Since M is sparse, we can compute these eigenvectors very efficiently using specialised algorithms.
- Since we obtained the data matrix \mathbb{X} as eigenvectors of M, it may seem that we did a linear dimension reduction. However, the sparsity of W (and therefore M) is what gives us our nonlinear dimension reduction.

Swiss roll i

lle_sr <- embed(cbind(X, Y, Z), "LLE", knn = 20,

$$
\text { ndim }=2 \text {) }
$$

\#\# finding neighbours
\#\# calculating weights
\#\# computing coordinates
lle_sr@data@data \%>\%
plot(col = as.character(colours), pch = 19)

Swiss roll if

Example i

> lle_res <- embed(data, "LLE", knn $=50$, ndim $=2)$
\#\# finding neighbours
\#\# calculating weights
\#\# computing coordinates

Example if

lle_res@data \%>\%
as.data.frame() \%>\%
ggplot(aes(LLE1, LLE2)) +
geom_point (alpha $=0.5)$ +
theme_minimal()

Example iif

Example iv

$$
\begin{array}{lllll}
\overline{2} & \overline{2} & \overline{2} & \overline{2} & \overline{2} \\
\overline{2} & \overline{2} & \overline{2} & \overline{2} & \frac{2}{2} \\
\cdots & \cdots & \overline{2} & \overline{2} & \overline{2}
\end{array}
$$

Further comments

- Advantages:
- Preserves local structure
- Less computationally expensive than Isomap
- Disadvantages:
- Less accurate in preserving global structure
- Doesn't work well with all manifolds (e.g. it fails when the underlying manifold is nonconvex)

