Multivariate Analysis of Variance

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Quick Overview

What do we mean by Analysis of Variance?

- ANOVA is a collection of statistical models that aim to analyze and understand the differences in means between different subgroups of the data.
- As such, it can be seen as a generalisation of the t-test (or of Hotelling's T^{2}).
- Note that there could be multiple, overlapping ways of defining the subgroups (e.g multiway ANOVA)
- It also provides a framework for hypothesis testing.
- Which can be recovered from a suitable regression model.
- Most importantly, ANOVA provides a framework for understanding and comparing the various sources of variation in the data.

Review of univariate ANOVA i

- Assume the data comes from g populations:

$$
\begin{array}{ccc}
X_{11}, & \ldots, & X_{1 n_{1}} \\
\vdots & \ddots & \vdots \\
X_{g 1}, & \ldots, & X_{g n_{g}}
\end{array}
$$

- Assume that $X_{\ell 1}, \ldots, X_{\ell n_{\ell}}$ is a random sample from $N\left(\mu_{\ell}, \sigma^{2}\right)$, for $\ell=1, \ldots, g$.
- Homoscedasticity
- We are interested in testing the hypothesis that $\mu_{1}=\ldots=\mu_{g}$.

Review of univariate ANOVA it

- Reparametrisation: We will write the mean $\mu_{\ell}=\mu+\tau_{\ell}$ as a sum of an overall component μ (i.e. shared by all populations) and a population-specific component τ_{ℓ}.
- Our hypothesis can now be rewritten as $\tau_{\ell}=0$, for all ℓ.
- We can write our observations as

$$
X_{\ell i}=\mu+\tau_{\ell}+\varepsilon_{\ell i}
$$

where $\varepsilon_{\ell i} \sim N\left(0, \sigma^{2}\right)$.

- Identifiability: We need to assume $\sum_{\ell=1}^{g} \tau_{\ell}=0$, otherwise there are infinitely many models that lead to the same data-generating mechanism.

Review of univariate ANOVA ifi

- Sample statistics: Set $n=\sum_{\ell=1}^{g} n_{\ell}$.
- Overall sample mean: $\bar{X}=\frac{1}{n} \sum_{\ell=1}^{g} \sum_{i=1}^{n_{\ell}} X_{\ell i}$.
- Population-specific sample mean: $\bar{X}_{\ell}=\frac{1}{n_{\ell}} \sum_{i=1}^{n_{\ell}} X_{\ell i}$.
- We get the following decomposition:

$$
\left(X_{\ell i}-\bar{X}\right)=\left(\bar{X}_{\ell}-\bar{X}\right)+\left(X_{\ell i}-\bar{X}_{\ell}\right)
$$

- Squaring the left-hand side and summing over both ℓ and i, we get

$$
\sum_{\ell=1}^{g} \sum_{i=1}^{n_{\ell}}\left(X_{\ell i}-\bar{X}\right)^{2}=\sum_{\ell=1}^{g} n_{\ell}\left(\bar{X}_{\ell}-\bar{X}\right)^{2}+\sum_{\ell=1}^{g} \sum_{i=1}^{n_{\ell}}\left(X_{\ell i}-\bar{X}_{\ell}\right)^{2}
$$

Review of univariate ANOVA iv

- This is typically summarised as $S S_{T}=S S_{M}+S S_{R}$:
- The total sum of squares:

$$
S S_{T}=\sum_{\ell=1}^{g} \sum_{i=1}^{n_{\ell}}\left(X_{\ell i}-\bar{X}\right)^{2}
$$

- The model (or treatment) sum of squares:

$$
S S_{M}=\sum_{\ell=1}^{g} n_{\ell}\left(\bar{X}_{\ell}-\bar{X}\right)^{2}
$$

- The residual sum of squares:

$$
S S_{R}=\sum_{\ell=1}^{g} \sum_{i=1}^{n_{\ell}}\left(X_{\ell i}-\bar{X}_{\ell}\right)^{2}
$$

Review of univariate ANOVA

- Yet another representation is the ANOVA table:

Source of Variation	Sum of Squares	Degrees of freedom
Model	$S S_{M}$	$g-1$
Residual	$S S_{R}$	$n-g$
Total	$S S_{T}$	$n-1$

- The usual test statistic used for testing $\tau_{\ell}=0$ for all ℓ is

$$
F=\frac{S S_{M} /(g-1)}{S S_{R} /(n-g)} \sim F(g-1, n-g)
$$

Review of univariate ANOVA vi

- We could also instead reject the null hypothesis for small values of

$$
\frac{S S_{R}}{S S_{R}+S S_{M}}=\frac{S S_{R}}{S S_{T}}
$$

This is the test statistic that we will generalize to the multivariate setting.

Multivariate ANOVA i

- The setting is similar: Assume the data comes from g populations:

$$
\begin{array}{ccc}
\mathbf{Y}_{11}, & \ldots, & \mathbf{Y}_{1 n_{1}} \\
\vdots & \ddots, & \vdots \\
\mathbf{Y}_{g 1}, & \ldots, & \mathbf{Y}_{g n_{g}}
\end{array}
$$

- Assume that $\mathbf{Y}_{\ell 1}, \ldots, \mathbf{Y}_{\ell n_{\ell}}$ is a random sample from $N_{p}\left(\mu_{\ell}, \Sigma\right)$, for $\ell=1, \ldots, g$.
- Homoscedasticity is key here again.
- We are again interested in testing the hypothesis that $\mu_{1}=\ldots=\mu_{g}$.

Multivariate ANOVA ii

- Reparametrisation: We will write the mean as $\mu_{\ell}=\mu+\tau_{\ell}$
- $\mathbf{Y}_{\ell i}=\mu+\tau_{\ell}+\mathbf{E}_{\ell i}$, where $\mathbf{E}_{\ell i} \sim N_{p}(0, \Sigma)$.
- Identifiability: We need to assume $\sum_{\ell=1}^{g} \tau_{\ell}=0$.
- Instead of a decomposition of the sum of squares, we get a decomposition of the outer product:

$$
\left(\mathbf{Y}_{\ell i}-\overline{\mathbf{Y}}\right)\left(\mathbf{Y}_{\ell i}-\overline{\mathbf{Y}}\right)^{T}
$$

Multivariate ANOVA ifi

- The decomposition is given as

$$
\begin{aligned}
\sum_{\ell=1}^{g} \sum_{i=1}^{n_{\ell}}\left(\mathbf{Y}_{\ell i}-\overline{\mathbf{Y}}\right)\left(\mathbf{Y}_{\ell i}-\overline{\mathbf{Y}}\right)^{T}= & \sum_{\ell=1}^{g} n_{\ell}\left(\overline{\mathbf{Y}}_{\ell}-\overline{\mathbf{Y}}\right)\left(\overline{\mathbf{Y}}_{\ell}-\overline{\mathbf{Y}}\right)^{T} \\
& +\sum_{\ell=1}^{g} \sum_{i=1}^{n_{\ell}}\left(\mathbf{Y}_{\ell i}-\overline{\mathbf{Y}}_{\ell}\right)\left(\mathbf{Y}_{\ell i}-\overline{\mathbf{Y}}_{\ell}\right)^{T}
\end{aligned}
$$

- Between sum of squares and cross products matrix: $B=\sum_{\ell=1}^{g} n_{\ell}\left(\overline{\mathbf{Y}}_{\ell}-\overline{\mathbf{Y}}\right)\left(\overline{\mathbf{Y}}_{\ell}-\overline{\mathbf{Y}}\right)^{T}$.
- Within sum of squares and cross products matrix: $W=\sum_{\ell=1}^{g} \sum_{i=1}^{n_{\ell}}\left(\mathbf{Y}_{\ell i}-\overline{\mathbf{Y}}_{\ell}\right)\left(\mathbf{Y}_{\ell i}-\overline{\mathbf{Y}}_{\ell}\right)^{T}$.

Multivariate ANOVA iv

- Note that $W=\sum_{\ell=1}^{g}\left(n_{\ell}-1\right) S_{\ell}$.
- Similarly as above, we have a MANOVA table:

Source of Variation	Sum of Squares	Degrees of freedom
Model	B	$g-1$
Residual	W	$n-g$
Total	$B+W$	$n-1$

- To test the null hypothesis $H_{0}: \tau_{\ell}=0$ for all $\ell=1, \ldots, g$, we will use Wilk's lambda as our test statistic:

$$
\Lambda=\frac{|W|}{|B+W|}
$$

Multivariate ANOVA

- There is actually no closed-form for the null distribution of Λ, so we will use Bartlett's approximation:

$$
-\left(n-1-\frac{1}{2}(p+g)\right) \log \Lambda \approx \chi^{2}((g-1) p) .
$$

- In particular, if we let $c=\chi_{\alpha}^{2}((n-1) p)$ be the critical value, we reject the null hypothesis if

$$
\Lambda \leq \exp \left(\frac{-c}{n-1-0.5(p+g)}\right)
$$

Example

\#\# Example on producing plastic film \#\# from Krzanowski (1998, p. 381)
tear <- c $(6.5,6.2,5.8,6.5,6.5,6.9,7.2$, $6.9,6.1,6.3,6.7,6.6,7.2,7.1$, $6.8,7.1,7.0,7.2,7.5,7.6)$
gloss <- c $9.5,9.9,9.6,9.6,9.2,9.1,10.0$, $9.9,9.5,9.4,9.1,9.3,8.3,8.4$, $8.5,9.2,8.8,9.7,10.1,9.2)$
opacity <- c $(4.4,6.4,3.0,4.1,0.8,5.7,2.0$, $3.9,1.9,5.7,2.8,4.1,3.8,1.6$, $3.4,8.4,5.2,6.9,2.7,1.9)$

Example ii

$$
\begin{aligned}
& \text { Y <- cbind(tear, gloss, opacity) } \\
& \text { Y_low <- Y[1:10,] } \\
& \text { Y_high <- Y[11:20,] } \\
& \text { n <- nrow }(\mathrm{Y}) \text {; } \mathrm{p} \text { <- ncol(Y); g <- } 2 \\
& \mathrm{~W}<-\left(\operatorname{nrow}\left(\mathrm{Y} _ \text {low) }-1\right) * \operatorname{cov}\left(Y _l o w\right)+\right. \\
& \text { (nrow(Y_high) - 1) *cov(Y_high) } \\
& \text { B <- (} \mathrm{n}-1 \text {) * } \operatorname{cov}(\mathrm{Y})-\mathrm{W} \\
& \text { (Lambda <- det(W)/det }(W+B) \text {) }
\end{aligned}
$$

\#\# [1] 0.4136192

Example iif

transf_lambda <- - (n - $1-0.5 *(\mathrm{p}+\mathrm{g})) * \log ($ Lambda) transf_lambda > qchisq(0.95, p*(g-1))
\#\# [1] TRUE
\# Or if you want a p-value
pchisq(transf_lambda, p*(g-1), lower.tail = FALSE)
\#\# [1] 0.002227356

Example iv

\# R has a function for MANOVA
\# But first, create factor variable
rate <- gl(g, 10, labels = c("Low", "High"))
fit <- manova(Y ~ rate)
summary_tbl <- broom::tidy(fit, test = "Wilks")
\# Or you can use the summary function
knitr::kable(summary_tbl, digits = 3)

Example v

term	df	wilks	statistic	num.df	den.df	p.value
rate	1	0.414	7.561	3	16	0.002
Residuals	18	-	-	-	-	-

Example vi

\# Check residuals for evidence of normality
library(tidyverse)
fit \% \% \%
residuals \%>\%
as.data.frame() \%>\%
gather(variable, residual) \%>\%
ggplot(aes(sample = residual)) +
stat_qq() + stat_qq_line() +
facet_grid(. ~ variable) +
theme_minimal()

Example vif

Comments i

- The output from R shows a different approximation to the Wilk's lambda distribution, due to Rao.
- There are actually 4 tests available in R (we will discuss them in the next lecture):
- Wilk's lambda;
- Pillai-Bartlett;
- Hotelling-Lawley;
- Roy’s Largest Root.

Comments if

- Since we only had two groups in the above example, we were only comparing two means.
- Wilk's lambda was therefore equivalent to Hotelling's T^{2}.
- But of course MANOVA is much more general.
- We can assess the normality assumption by looking at the residuals $\mathbf{E}_{\ell i}=\mathbf{Y}_{\ell i}-\overline{\mathbf{Y}}_{\ell}$.

Testing for Equality of Covariance Matrices

- Last lecture, when comparing two multivariate means, and again today, we talked about homoscedasticity as an important assumption.
- This is a testable assumption, i.e. we can devise a corresponding hypothesis test.
- Our null hypothesis: $H_{0}: \Sigma_{1}=\cdots=\Sigma_{g}$, where Σ_{ℓ} is the covariance matrix for population ℓ.
- In this course, we will discuss Box's M-test
- This test is based on a comparison of generalized variances.

Testing for Equality of Covariance Matrices if

- Under the normality assumption, the likelihood ratio statistic for the null hypothesis above is

$$
\Lambda=\prod_{\ell=1}^{g}\left(\frac{\left|S_{\ell}\right|}{\left|S_{\text {pool }}\right|}\right)^{\left(n_{\ell}-1\right) / 2}
$$

- Here, S_{ℓ} is the sample covariance for population ℓ, and $S_{\text {pool }}$ is the pooled estimator:

$$
S_{p o o l}=\frac{1}{n-1}\left(\sum_{\ell=1}^{g}\left(n_{\ell}-1\right) S_{\ell}\right)=\frac{1}{n-1} W
$$

Testing for Equality of Covariance Matrices iif

- Box's M-statistic is defined as

$$
M=-2 \log \Lambda
$$

- The general theory of Likelihood Ratio Tests tells us that $M \approx \chi^{2}(\nu)$ for an appropriate value $\nu>0$.

Testing for Equality of Covariance Matrices iv

Box's Test for Equality of Covariance Matrices Set

$$
u=\left(\sum_{\ell=1}^{g} \frac{1}{n_{\ell}-1}-\frac{1}{n-g}\right)\left(\frac{2 p^{2}+3 p-1}{6(p+1)(g-1)}\right) .
$$

Then $C=(1-u) M$ has approximate $\chi^{2}(\nu)$ distribution, where

$$
\nu=\frac{1}{2} p(p+1)(g-1) .
$$

Comments about Box's M-test

- Good approximation if $n_{\ell}>20$ for all ℓ and both $g, p \leq 5$.
- Not very realistic for modern datasets...
- There is another approximation using the F distribution when the conditions above are not met.
- See Rencher (1998), Section 4.3.
- However, Box's M-test is especially sensitive to departures from normality.
- In general, one can also use graphical tests.
- Key result: With large and approximately equal sample sizes, MANOVA is relatively robust to heteroscedasticity.

Example (cont'd)

$$
\begin{aligned}
& \text { S_low <- cov(Y_low) } \\
& \text { S_high <- cov(Y_high) } \\
& \text { S_pool <- W/(n - 1) } \\
& \text { c("pool" = log(det(S_pool)), } \\
& \text { "low" }=\text { log(det(S_low)), } \\
& \text { "high" }=\log (\operatorname{det}(\text { S_high })))
\end{aligned}
$$

```
\#\# pool low high
\#\# -2.370911 -2.949096 -2.013061
```


Example (cont'd) ii

library(heplots)
(boxm_res <- boxM(Y, rate))
\#\#
\#\# Box's M-test for Homogeneity of Covariance Matrice
\#\#
\#\# data: Y
\#\# Chi-Sq (approx.) = 4.0175, df = 6, p-value $=0.6743$

Example (cont'd) iif

\# You can plot the log generalized variances
\# The plot function adds 95\% CI
plot(boxm_res)

Example (cont'd) iv

Example (cont'd)

\# Finally you can also plot the ellipses
\# as a way to compare the covariances
covEllipses(Y, rate, center = TRUE,
label.pos = 'bottom')

Example (cont'd) vi

Example (cont'd) vii

\# Or all pairwise comparisons together covEllipses(Y, rate, center = TRUE,

$$
\begin{aligned}
& \text { label.pos }=\text { 'bottom', } \\
& \text { variables }=1: 3)
\end{aligned}
$$

Example (cont'd) viif

Strategy for Multivariate Comparison of Treatments

1. Try to identify outliers.

- This should be done graphically at first.
- Once the model is fitted, you can also look at influence measures.

2. Perform a multivariate test of hypothesis.
3. If there is evidence of a multivariate difference, calculate Bonferroni confidence intervals and investigate component-wise differences.

- The projection of the confidence region onto each variable generally leads to confidence intervals that are too large.

