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Multivariate Linear Regression model

• We are interested in the relationship between p outcomes
Y1, . . . , Yp and q covariates X1, . . . , Xq.

• We will write Y = (Y1, . . . , Yp) and
X = (1, X1, . . . , Xq).

• We will assume a linear relationship:
• E(Y | X) = BT X, where B is a (q + 1) × p matrix of

regression coefficients.
• We will also assume homoscedasticity:

• Cov(Y | X) = Σ, where Σ is positive-definite.
• In other words, the (conditional) covariance of Y does

not depend on X.
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Relationship with Univariate regression i

• Let σ2
i be the i-th diagonal element of Σ.

• Let βi be the i-th column of B.
• From the model above, we get p univariate regressions:

• E(Yi | X) = XT βi;
• Var(Yi | X) = σ2

i .
• However, we will use the correlation between outcomes

for hypothesis testing
• This follows from the assumption that each component

Yi is linearly associated with the same covariates X.
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Relationship with Univariate regression ii

• If we assumed a different set of covariates Xi for each
outcome Yi and still wanted to use the correlation
between the outcomes, we would get the Seemingly
Unrelated Regressions (SUR) model.

• This model is sometimes used by econometricians.
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Least-Squares Estimation i

• Let Y1 . . . , Yn be a random sample of size n, and let
X1, . . . , Xn be the corresponding sample of covariates.

• We will write Y and X for the matrices whose i-th row is
Yi and Xi, respectively.

• We can then write E(Y | X) = XB.
• For Least-Squares Estimation, we will be looking for the

estimator B̂ of B that minimises a least-squares criterion:
• LS(B) = tr

[
(Y − XB)T (Y − XB)

]
• Note: This criterion is also known as the (squared)

Frobenius norm; i.e. LS(B) = ∥Y − XB∥2
F .
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Least-Squares Estimation ii

• Note 2: If you expand the matrix product and look at
the diagonal, you can see that the Frobenius norm is
equivalent to the sum of the squared entries.

• To minimise LS(B), we could use matrix derivatives…
• Or, we can expand the matrix product along the diagonal

and compute the trace.
• Let Y(j) be the j-th column of Y.
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Least-Squares Estimation iii

• In other words, Y(j) = (Y1j , . . . , Ynj) contains the n

values for the outcome Yj . We then have

LS(B) = tr
[
(Y − XB)T (Y − XB)

]
=

p∑
j=1

(Y(j) − Xβj)T (Y(j) − Xβj)

=
p∑

j=1

n∑
i=1

(Yij − βT
j Xi)2.
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Least-Squares Estimation iv

• For each j, the sum ∑n
i=1(Yij − βT

j Xi)2 is simply the
least-squares criterion for the corresponding univariate
linear regression.

• β̂j = (XTX)−1XT Y(j)

• But since LS(B) is a sum of p positive terms, each
minimised at β̂j, the whole is sum is minimised at

B̂ =
(
β̂1 · · · β̂p

)
.

• Or put another way:

B̂ = (XTX)−1XTY.
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Comments i

• We still have not made any distributional assumptions on
Y.

• We do not need to assume normality to derive the
least-squares estimator.

• The least-squares estimator is unbiased:

E(B̂ | X) = (XTX)−1XE(Y | X)
= (XTX)−1XTXB

= B.
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Comments ii

• We did not use the covariance matrix Σ anywhere in the
estimation process. But note that:

Cov(β̂i, β̂j) = Cov
(
(XTX)−1XT Y(i), (XTX)−1XT Y(j)

)
= (XTX)−1XT Cov

(
Y(i), Y(j)

) (
(XTX)−1XT

)T

= (XTX)−1XT (σijIn)X(XTX)−1

= σij(XTX)−1,

where σij is the (i, j)-th entry of Σ.
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Example i

# Let's revisit the plastic film data
library(heplots)
library(tidyverse)

Y <- Plastic %>%
select(tear, gloss, opacity) %>%
as.matrix

X <- model.matrix(~ rate, data = Plastic)
head(X)
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Example ii

## (Intercept) rateHigh
## 1 1 0
## 2 1 0
## 3 1 0
## 4 1 0
## 5 1 0
## 6 1 0

(B_hat <- solve(crossprod(X)) %*% t(X) %*% Y)
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Example iii
## tear gloss opacity
## (Intercept) 6.49 9.57 3.79
## rateHigh 0.59 -0.51 0.29

# Compare with lm output
fit <- lm(cbind(tear, gloss, opacity) ~ rate,

data = Plastic)
coef(fit)

## tear gloss opacity
## (Intercept) 6.49 9.57 3.79
## rateHigh 0.59 -0.51 0.29
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Geometry of LS i

• Let P = X(XTX)−1XT .
• P is symmetric and idempotent:

P 2 = X(XTX)−1XTX(XTX)−1XT = X(XTX)−1XT = P.

• Let Ŷ = XB̂ be the fitted values, and Ê = Y − Ŷ, the
residuals.

• We have Ŷ = PY.
• We also have Ê = (I − P )Y.
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Geometry of LS ii

• Putting all this together, we get

ŶT Ê = (PY)T (I − P )Y
= YT P (I − P )Y
= YT (P − P 2)Y
= 0.

• In other words, the fitted values and the residuals are
orthogonal.

• Similarly, we can see that XT Ê = 0 and PX = X.
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Geometry of LS iii

• Interpretation: Ŷ is the orthogonal projection of Y onto
the column space of X.
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Example (cont’d) i

Y_hat <- fitted(fit)
residuals <- residuals(fit)

crossprod(Y_hat, residuals)

## tear gloss opacity
## tear -9.489298e-16 2.959810e-15 -4.720135e-15
## gloss -1.424461e-15 1.109357e-15 -1.150262e-14
## opacity -7.268852e-16 1.211209e-15 1.648459e-16
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Example (cont’d) ii

crossprod(X, residuals)

## tear gloss opacity
## (Intercept) 0 5.828671e-16 -4.440892e-16
## rateHigh 0 1.387779e-16 4.440892e-16
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Example (cont’d) iii

# Is this really zero?
isZero <- function(mat) {
all.equal(mat, matrix(0, ncol = ncol(mat),

nrow = nrow(mat)),
check.attributes = FALSE)

}

isZero(crossprod(Y_hat, residuals))

## [1] TRUE
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Example (cont’d) iv

isZero(crossprod(X, residuals))

## [1] TRUE
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Bootstrapped Confidence Intervals i

• We still have not made any assumption about the
distribution of Y, beyond the conditional mean and
covariance function.

• Let’s see how much further we can go.
• We will use bootstrap to derive confidence intervals for

our quantities of interest.
• Bootstrap is a resampling technique for estimating the

sampling distribution of an estimator of interest.
• Particularly useful when we think the usual assumptions

may not hold, or when the sampling distribution would
be difficult to derive.
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Bootstrapped Confidence Intervals ii

• Let’s say we want to estimate the sampling distribution of
the correlation coefficient.

• We have a sample of pairs (U1, V1), . . . , (Un, Vn), from
which we estimated the correlation ρ̂.

• The idea is to resample with replacement from our
sample to mimic the process of “repeating the
experiment”.
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Bootstrapped Confidence Intervals iii

• For each bootstrap sample (U (b)
1 , V

(b)
1 ), . . . , (U (b)

n , V (b)
n ),

we compute the sample correlation ρ̂(b).
• We now have a whole sample of correlation coefficients

ρ̂(1), . . . , ρ̂(B).
• From its quantiles, we can derive a confidence interval for

ρ̂.
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Example i

library(candisc)

dataset <- HSB[,c("math", "sci")]

(corr_est <- cor(dataset)[1,2])

## [1] 0.6495261
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Example ii

# Choose a number of bootstrap samples
B <- 5000
corr_boot <- replicate(B, {

samp_boot <- sample(nrow(dataset),
replace = TRUE)

dataset_boot <- dataset[samp_boot,]
cor(dataset_boot)[1,2]

})

quantile(corr_boot,
probs = c(0.025, 0.975))
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Example iii

## 2.5% 97.5%
## 0.6037029 0.6924364

hist(corr_boot, breaks = 50)
abline(v = corr_est, col = 'red',

lty = 2)
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Example iv
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Bootstrapped Confidence Intervals (cont’d) i

• Going back to our multivariate linear regression setting,
we can bootstrap our estimate of the matrix of regression
coefficients!

• We will sample with replacement the rows of Y and X
• It’s important to sample the same rows in both

matrices. We want to keep the relationship between Y
and X intact.

• For each bootstrap sample, we can compute the estimate
B̂(b).

• From these samples, we can compute confidence intervals
for each entry in B.
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Bootstrapped Confidence Intervals (cont’d) ii

• We can also technically compute confidence regions for
multiple entries in B

• E.g. a whole column or a whole row
• But multivariate quantiles are tricky…
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Example (cont’d) i

B_boot <- replicate(B, {
samp_boot <- sample(nrow(Y),

replace = TRUE)
X_boot <- X[samp_boot,]
Y_boot <- Y[samp_boot,]

solve(crossprod(X_boot)) %*% t(X_boot) %*% Y_boot
})

# The output is a 3-dim array
dim(B_boot)
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Example (cont’d) ii

## [1] 2 3 5000

B_boot[,,1]

## tear gloss opacity
## (Intercept) 6.5545455 9.5090909 3.7818182
## rateHigh 0.4787879 -0.1535354 0.7515152

# CI for effect of rate on tear
quantile(B_boot["rateHigh", "tear",],

probs = c(0.025, 0.975))
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Example (cont’d) iii

## 2.5% 97.5%
## 0.2738049 0.9125000

# CI for effect of rate on gloss
quantile(B_boot["rateHigh", "gloss",],

probs = c(0.025, 0.975))

## 2.5% 97.5%
## -0.8967100 -0.1040152

32



Example (cont’d) iv

# CI for effect of rate on opacity
quantile(B_boot["rateHigh", "opacity",],

probs = c(0.025, 0.975))

## 2.5% 97.5%
## -1.367702 2.100000
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Example (cont’d) v

library(ggforce)

B_boot["rateHigh",,] %>%
t() %>%
as.data.frame() %>%
ggplot(aes(x = .panel_x, y = .panel_y)) +
geom_point() +
geom_autodensity() +
geom_density2d() +
facet_matrix(vars(everything()),

layer.diag = 2,
layer.upper = 3)
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# There is some correlation, but not much
B_boot["rateHigh",,] %>%
t() %>%
cor()

## tear gloss opacity
## tear 1.00000000 0.2124412 -0.07018573
## gloss 0.21244116 1.0000000 0.17158618
## opacity -0.07018573 0.1715862 1.00000000
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Maximum Likelihood Estimation i

• We now introduce distributional assumptions on Y:

Y | X ∼ Np(BT X, Σ).

• This is the same conditions on the mean and covariance
as above. The only difference is that we now assume the
residuals are normally distributed.

• Note: The distribution above is conditional on X. It
could happen that the marginal distribution of Y is not
normal.
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Maximum Likelihood Estimation ii

• Theorem: Suppose X has full rank q + 1, and assume
that n ≥ q + p + 1. Then the least-squares estimator
B̂ = (XTX)−1XTY of B is also the maximum likelihood
estimator. Moreover, we have

1. B̂ is normally distributed.
2. The maximum likelihood estimator for Σ is Σ̂ = 1

n Ê
T Ê.

3. nΣ̂ follows a Wishart distribution Wn−q−1(Σ) on
n − q − 1 degrees of freedom.

4. The maximised likelihood is
L(B̂, Σ̂) = (2π)−np/2|Σ̂|−n/2 exp(−pn/2).
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Maximum Likelihood Estimation iii

• Note: Looking at the degrees of freedom of the Wishart
distribution, we can infer that Σ̂ is a biased estimator of
Σ. An unbiased estimator is

S = 1
n − q − 1

ÊT Ê.
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Confidence and Prediction Regions i

• Suppose we have a new observation X0. We are
interested in making predictions and inference about the
corresponding outcome vector Y0.

• First, since B̂ is an unbiased estimator of B, we see that

E(XT
0 B̂) = XT

0 E(B̂) = XT
0 B = E(Y0).

Therefore, it makes sense to estimate Y0 using XT
0 B̂.
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Confidence and Prediction Regions ii

• What is the estimation error? Let’s look at the
covariance of XT

0 β̂i and XT
0 β̂j

Cov
(
XT

0 β̂i, XT
0 β̂j

)
= XT

0 Cov
(
β̂i, β̂j

)
X0

= σijXT
0 (XTX)−1X0.

• What is the forecasting error? In that case, we also need
to take into account the extra variation coming from the
residuals.

• In other words, we also need to sample a new “error”
term E0 = (E01, . . . , E0p) independently of X0.
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Confidence and Prediction Regions iii

• Let Ỹ0 = XT
0 B + E0 be the new value.

• The forecast error is given by

Ỹ0 − XT
0 B̂ = E0 − XT

0 (B̂ − B).

• Since E(Ỹ0 − XT
0 B̂) = 0, we can still deduce that XT

0 B̂

is an unbiased predictor of Y0.
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Confidence and Prediction Regions iv
• Now let’s look at the covariance of the forecast errors in

each component:

E
[(

Ỹ0i − XT
0 β̂i

) (
Ỹ0j − XT

0 β̂j

)]
= E

[(
E0i − XT

0 (β̂i − βi)
) (

E0j − XT
0 (β̂j − βj)

)]
= E(E0iE0j) + XT

0 E
[
(β̂i − βi)(β̂j − βj)

]
X0

= σij + σijXT
0 (XTX)−1X0

= σij

(
1 + XT

0 (XTX)−1X0
)

.

• Therefore, we can see that the difference between the
estimation error and the forecasting error is σij.
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Example i

# Recall our model
fit <- lm(cbind(tear, gloss, opacity) ~ rate,

data = Plastic)

new_x <- data.frame(rate = factor("High",
levels = c("Low",

"High")))
(prediction <- predict(fit, newdata = new_x))

## tear gloss opacity
## 1 7.08 9.06 4.08
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Example ii

X <- model.matrix(fit)
S <- crossprod(resid(fit))/(nrow(Plastic) - ncol(X))
new_x <- model.matrix(~rate, new_x)

quad_form <- drop(new_x %*% solve(crossprod(X)) %*%
t(new_x))

# Estimation covariance
(est_cov <- S * quad_form)
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Example iii

## tear gloss opacity
## tear 0.014027778 0.003994444 -0.006083333
## gloss 0.003994444 0.021027778 0.014716667
## opacity -0.006083333 0.014716667 0.409916667

# Forecasting covariance
(fct_cov <- S *(1 + quad_form))

## tear gloss opacity
## tear 0.15430556 0.04393889 -0.06691667
## gloss 0.04393889 0.23130556 0.16188333
## opacity -0.06691667 0.16188333 4.50908333
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Example iv

# Estimation CIs
cbind(drop(prediction) - 1.96*sqrt(diag(est_cov)),

drop(prediction) + 1.96*sqrt(diag(est_cov)))

## [,1] [,2]
## tear 6.847860 7.312140
## gloss 8.775781 9.344219
## opacity 2.825115 5.334885
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Example v

# Forecasting CIs
cbind(drop(prediction) - 1.96*sqrt(diag(fct_cov)),

drop(prediction) + 1.96*sqrt(diag(fct_cov)))

## [,1] [,2]
## tear 6.31007778 7.849922
## gloss 8.11735297 10.002647
## opacity -0.08198204 8.241982
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Likelihood Ratio Tests i

• We can use a Likelihood Ratio test to assess the evidence
in support of two nested models.

• Write

B =

B1

B2

 , X =
(
X1 X2

)
,

where B1 is (r + 1) × p, B2 is (q − r) × p, X1 is
n × (r + 1), X2 is n × (q − r), and r ≥ 0 is a
non-negative integer.
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Likelihood Ratio Tests ii

• We want to compare the following models:

Full model : E(Y | X) = BT X
Nested model : E(Y | X1) = BT

1 X1

• According to our previous theorem, the corresponding
maximised likelihoods are
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Likelihood Ratio Tests iii

Full model : L(B̂, Σ̂) = (2π)−np/2|Σ̂|−n/2 exp(−pn/2)
Nested model : L(B̂1, Σ̂1) = (2π)−np/2|Σ̂1|−n/2 exp(−pn/2)

• Therefore, taking the ratio of the likelihoods of the
nested model to the full model, we get

Λ = L(B̂1, Σ̂1)
L(B̂, Σ̂)

=

 |Σ̂|
|Σ̂1|

n/2

.
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Likelihood Ratio Tests iv

• Or equivalently, we get Wilks’ lambda statistic:

Λ2/n = |Σ̂|
|Σ̂1|

.

• As discussed in the lecture on MANOVA, there is no
closed-form solution for the distribution of this statistic
under the null hypothesis H0 : B2 = 0, but there are
many approximations.

• Two important special cases:
• When r = 0, we are testing the full model against the

empty model (i.e. only the intercept).
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Likelihood Ratio Tests v

• When X2 only contains one covariate, we are testing the
full model against a simpler model without that
covariate. In other words, we are testing for the
significance of that covariate.
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Other Multivariate Test Statistics i

• The Wilks’ lambda statistic can actually be expressed in
terms of the (generalized) eigenvalues of a pair of
matrices (H, E):

• E = nΣ̂ is the error matrix.
• H = n(Σ̂1 − Σ̂) is the hypothesis matrix.

• Under our assumptions about the rank of X and the
sample size, E is (almost surely) invertible, and therefore
we can look at the nonzero eigenvalues of HE−1:

• Let η1 ≥ · · · ≥ ηs be those nonzero eigenvalues, where
s = min(p, q − r).
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Other Multivariate Test Statistics ii

• Equivalently, these eigenvalues are the nonzero roots of
the determinantal equation det

(
(Σ̂1 − Σ̂) − ηΣ̂

)
= 0.

• The four classical multivariate test statistics are:

Wilks’ lambda :
s∏

i=1

1
1 + ηi

= |E|
|E + H|

Pillai’s trace :
s∑

i=1

ηi

1 + ηi

= tr
(
H(H + E)−1

)
Hotelling-Lawley trace :

s∑
i=1

ηi = tr
(
HE−1

)
Roy’s largest root : η1

1 + η1
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Other Multivariate Test Statistics iii

• Under the null hypothesis H0 : B2 = 0, all four statistics
can be well-approximated using the F distribution.

• Note: When r = q − 1, all four tests are equivalent.
• In general, as the sample size increases, all four tests give

similar results. For finite sample size, Roy’s largest root
has good power only if there the leading eigenvalue η1 is
significantly larger than the other ones.
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Example i

# Going back to our example
full_model <- lm(cbind(tear, gloss,

opacity) ~ rate*additive,
data = Plastic)

anova(full_model, test = "Wilks") %>%
broom::tidy() %>%
knitr::kable(digits = 3)
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Example ii

term df Wilks approx.F num.Df den.Df p.value

(Intercept) 1 0.001 5950.906 3 14 0.000
rate 1 0.382 7.554 3 14 0.003
additive 1 0.523 4.256 3 14 0.025
rate:additive 1 0.777 1.339 3 14 0.302
Residuals 16 - - - - -
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Example iii

anova(full_model, test = "Roy") %>%
broom::tidy() %>%
knitr::kable(digits = 3)

term df Roy approx.F num.Df den.Df p.value

(Intercept) 1 1275.194 5950.906 3 14 0.000
rate 1 1.619 7.554 3 14 0.003
additive 1 0.912 4.256 3 14 0.025
rate:additive 1 0.287 1.339 3 14 0.302
Residuals 16 - - - - -
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Example iv

# Fit a model with only rate
rate_model <- lm(cbind(tear, gloss,

opacity) ~ rate,
data = Plastic)

# Removing the dfs from approx
anova(full_model, rate_model,

test = "Wilks") %>%
broom::tidy() %>%
dplyr::select(-num.Df, -den.Df) %>%
knitr::kable(digits = 3)
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Example v

res.df df Gen.var. Wilks approx.F p.value

16 - 0.407 - - -
18 2 0.479 0.43 2.447 0.05
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Example vi

anova(full_model, rate_model,
test = "Roy") %>%

broom::tidy() %>%
dplyr::select(-num.Df, -den.Df) %>%
knitr::kable(digits = 3)

res.df df Gen.var. Roy approx.F p.value

16 - 0.407 - - -
18 2 0.479 1.084 5.418 0.01
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Example vii

# Let's look at the eigenvalues
E <- crossprod(residuals(full_model))
H <- crossprod(residuals(rate_model)) - E

result <- eigen(H %*% solve(E),
only.values = TRUE)

result$values[seq_len(2)]

## [1] 1.083657 0.115087
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Information Criteria i

• We can use hypothesis testing for model building:
• Add covariates that significantly improve the model

(forward selection);
• Remove non-significant covariates (backward

elimination).
• Another approach is to use Information Criteria.
• The general form of Akaike’s information criterion:

−2 log L(B̂, Σ̂) + 2d,

where d is the number of parameters to estimate.
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Information Criteria ii

• In multivariate regression, this would be
d = (q + 1)p + p(p + 1)/2.

• Therefore, we get (up to a constant):

AIC = n log|Σ̂| + 2(q + 1)p + p(p + 1).

• The intuition behind AIC is that it estimates the
Kullback-Leibler divergence between the posited model
and the true data-generating mechanism.

• So smaller is better.
• Model selection using information criteria proceeds as

follows:
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Information Criteria iii

1. Select models of interest {M1, . . . , MK}. They do not
need to be nested, and they do not need to involve the
same variables.

2. Compute the AIC for each model.
3. Select the model with the smallest AIC.

• The set of interesting models should be selected using
domain-specific knowledge when possible.

• If it is not feasible, you can look at all possible models
between the empty model and the full model.

• There are many variants of AIC, each with their own
trade-offs.

• For more details, see Timm (2002) Section 4.2.d.
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Example (cont’d) i

## AIC(full_model)
# Error in logLik.lm(full_model) :
# 'logLik.lm' does not support multiple responses
class(full_model)

## [1] "mlm" "lm"
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Example (cont’d) ii

logLik.mlm <- function(object, ...) {
resids <- residuals(object)
Sigma_ML <- crossprod(resids)/nrow(resids)
ans <- sum(mvtnorm::dmvnorm(resids,

sigma = Sigma_ML,
log = TRUE))

df <- prod(dim(coef(object))) +
choose(ncol(Sigma_ML) + 1, 2)

attr(ans, "df") <- df
class(ans) <- "logLik"
return(ans)

}
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logLik(full_model)

## 'log Lik.' -51.45783 (df=18)

AIC(full_model)

## [1] 138.9157

AIC(rate_model)

## [1] 143.7768
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Example of model selection i

# Model selection
lhs <- "cbind(tear, gloss, opacity) ~"
rhs_form <- c("1", "rate", "additive",

"rate+additive", "rate*additive")

purrr::map_df(rhs_form, function(rhs) {
form <- formula(paste(lhs, rhs))
fit <- lm(form, data = Plastic)
return(data.frame(model = rhs, aic = AIC(fit),

stringsAsFactors = FALSE))
})
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Example of model selection ii

## model aic
## 1 1 155.4330
## 2 rate 143.7768
## 3 additive 150.9542
## 4 rate+additive 137.9592
## 5 rate*additive 138.9157
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Multivariate Influence Measures i

• Earlier we introduced the projection matrix

P = X(XTX)−1XT

and we noted that Ŷ = PY.
• Looking at one row at a time, we can see that

Ŷi =
n∑

j=1
PijYj

= PiiYi +
∑
j ̸=i

PijYi,

where Pij is the (i, j)-th entry of P .
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Multivariate Influence Measures ii

• In other words, the diagonal element Pii represents the
leverage (or influence) of observation Yi on the fitted
value Ŷi.

• Observation Yi is said to have a high leverage if Pii is
large compared to the other element on the diagonal.

• Let S = 1
n−q−1Ê

T Ê be the unbiased estimator of Σ, and
let Êi be the i-th row of Ê.

• We define the multivariate internally Studentized
residuals as follows:

ri = ÊT
i S−1Êi

1 − Pii

.
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Multivariate Influence Measures iii

• If we let S(i) be the estimator of Σ where we have
removed row i from the residual matrix Ê, we define the
multivariate externally Studentized residuals as
follows:

T 2
i =

ÊT
i S−1

(i) Êi

1 − Pii

.

• An observation Yi may be considered a potential outlier if(
n − q − p − 1
p(n − q − 2)

)
T 2

i > Fα(p, n − q − 2).
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Multivariate Influence Measures iv

• Yet another measure of influence is the multivariate
Cook’s distance.

Ci = Pii

(1 − Pii)2 ÊT
i S−1Êi/(q + 1).

• An observation Yi may be considered a potential outlier
if Ci is larger than the median of a chi square distribution
with ν = p(n − q − 1) degrees of freedom.
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Example i

library(openintro)
model <- lm(cbind(startPr, totalPr) ~

nBids + cond + sellerRate +
wheels + stockPhoto,

data = marioKart)

X <- model.matrix(model)
P <- X %*% solve(crossprod(X)) %*% t(X)
lev_values <- diag(P)

hist(lev_values, 50)
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Example ii

Histogram of lev_values
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Example iii

n <- nrow(marioKart)
resids <- residuals(model)
S <- crossprod(resids)/(n - ncol(X))

S_inv <- solve(S)

const <- lev_values/((1 - lev_values)^2*ncol(X))
cook_values <- const * diag(resids %*% S_inv

%*% t(resids))

hist(cook_values, 50)
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Example iv

Histogram of cook_values
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Example v

# Cut-off value
(cutoff <- qchisq(0.5, ncol(S)*(n - ncol(X))))

## [1] 273.3336

which(cook_values > cutoff)

## named integer(0)
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Strategy for Multivariate Model Building

1. Try to identify outliers.
• This should be done graphically at first.
• Once the model is fitted, you can also look at influence

measures.
2. Perform a multivariate test of hypothesis.
3. If there is evidence of a multivariate difference, calculate

Bonferroni confidence intervals and investigate
component-wise differences.

• The projection of the confidence region onto each
variable generally leads to confidence intervals that are
too large.
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Multivariate Regression and MANOVA i

• Recall from our lecture on MANOVA: assume the data
comes from g populations:

Y11, . . . , Y1n1
... . . . ...

Yg1, . . . , Ygng

,

where Yℓ1, . . . , Yℓnℓ
∼ Np(µℓ, Σ).
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Multivariate Regression and MANOVA ii

• We obtain an equivalent model if we set

Y =



Y11
...

Y1n1
...

Yg1
...

Ygng


, X =



1 1 0 · · · 0
... ... ... . . . ...
1 1 0 · · · 0
1 0 1 · · · 0
... ... ... . . . ...
1 0 1 · · · 0
1 0 0 · · · 0
... ... ... . . . ...
1 0 0 · · · 0



.
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Multivariate Regression and MANOVA iii

• Here, Y is n × p and X is n × g.
• The first column of X is all ones.
• The (i, ℓ + 1) entry of X is 1 iff the i-th row belongs to

the ℓ-th group.
• Note: It is common to have a different constraint on

the parameters τℓ in regression; here, we assume that
τg = 0.

• In other words, we model group membership using a
single categorial covariate and therefore g − 1 dummy
variables.
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Multivariate Regression and MANOVA iv

• More complicated designs for MANOVA can also be
expressed in terms of linear regression:

• For example, for two-way MANOVA, we would have two
categorical variables. We would also need to include an
interaction term to get all combinations of the two
treatments.

• In general, fractional factorial designs can be expressed
as a linear regression with a carefully selected series of
dummy variables.
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