Multivariate Normal Distribution

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Building the multivariate density

- Let $Z \sim N(0,1)$ be a standard (univariate) normal random variable. Recall that its density is given by

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} z^{2}\right)
$$

- Now if we take $Z_{1}, \ldots, Z_{p} \sim N(0,1)$ independently distributed, their joint density is

Building the multivariate density if

$$
\begin{aligned}
\phi\left(z_{1}, \ldots, z_{p}\right) & =\prod_{i=1}^{p} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} z_{i}^{2}\right) \\
& =\frac{1}{(\sqrt{2 \pi})^{p}} \exp \left(-\frac{1}{2} \sum_{i=1}^{p} z_{i}^{2}\right) \\
& =\frac{1}{(\sqrt{2 \pi})^{p}} \exp \left(-\frac{1}{2} \mathbf{z}^{T} \mathbf{z}\right),
\end{aligned}
$$

where $\mathbf{z}=\left(z_{1}, \ldots, z_{p}\right)$.

- More generally, let $\mu \in \mathbb{R}^{p}$ and let Σ be a $p \times p$ positive definite matrix.

Building the multivariate density iif

- Let $\Sigma=L L^{T}$ be the Cholesky decomposition for Σ.
- Let $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{p}\right)$ be a standard (multivariate) normal random vector, and define $\mathbf{Y}=L \mathbf{Z}+\mu$. We know from last lecture that
- $E(\mathbf{Y})=L E(\mathbf{Z})+\mu=\mu$;
- $\operatorname{Cov}(\mathbf{Y})=L \operatorname{Cov}(\mathbf{Z}) L^{T}=\Sigma$.
- To get the density, we need to compute the inverse transformation:

$$
\mathbf{Z}=L^{-1}(\mathbf{Y}-\mu)
$$

Building the multivariate density iv

- The Jacobian matrix J for this transformation is simply L^{-1}, and therefore

$$
\begin{aligned}
|\operatorname{det}(J)| & =\left|\operatorname{det}\left(L^{-1}\right)\right| \\
& =\operatorname{det}(L)^{-1} \quad(L \text { is p.d. }) \\
& =\sqrt{\operatorname{det}(\Sigma)}^{-1} \\
& =\operatorname{det}(\Sigma)^{-1 / 2}
\end{aligned}
$$

Building the multivariate density

- Plugging this into the formula for the density of a transformation, we get

$$
\begin{aligned}
& f\left(y_{1}, \ldots, y_{p}\right)=\frac{1}{\operatorname{det}(\Sigma)^{1 / 2}} \phi\left(L^{-1}(\mathbf{y}-\mu)\right) \\
& =\frac{1}{\operatorname{det}(\Sigma)^{1 / 2}}\left(\frac{1}{(\sqrt{2 \pi})^{p}} \exp \left(-\frac{1}{2}\left(L^{-1}(\mathbf{y}-\mu)\right)^{T} L^{-1}(\mathbf{y}-\mu)\right)\right) \\
& =\frac{1}{\operatorname{det}(\Sigma)^{1 / 2}(\sqrt{2 \pi})^{p}} \exp \left(-\frac{1}{2}(\mathbf{y}-\mu)^{T}\left(L L^{T}\right)^{-1}(\mathbf{y}-\mu)\right) \\
& =\frac{1}{\sqrt{(2 \pi)^{p}|\Sigma|}} \exp \left(-\frac{1}{2}(\mathbf{y}-\mu)^{T} \Sigma^{-1}(\mathbf{y}-\mu)\right)
\end{aligned}
$$

Example i

set. seed (123)

$$
\begin{aligned}
& \mathrm{n}<-1000 ; \mathrm{p}<-2 \\
& \mathrm{Z}<-\operatorname{matrix}(\operatorname{rnorm}(\mathrm{n} * \mathrm{p}), \mathrm{ncol}=\mathrm{p})
\end{aligned}
$$

$m u<-c(1,2)$
Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)
L <- t(chol (Sigma))

Example if

$$
\begin{aligned}
& \mathrm{Y}<-\mathrm{L} \% * \% \mathrm{t}(\mathrm{Z})+\mathrm{mu} \\
& \mathrm{Y}<-\mathrm{t}(\mathrm{Y})
\end{aligned}
$$

colMeans (Y)
\#\# [1] 1.0161282 .044840
$\operatorname{cov}(\mathrm{Y})$
\#\# [,1] [,2]
\#\# [1,] 0.9834589 0.5667194
\#\# [2,] 0.56671941 .0854361

Example ifi

library(tidyverse)
Y \% $>\%$
data.frame() \%>\%
ggplot(aes(X1, X2)) + geom_density_2d()

Example iv

Example v

> library(mvtnorm)
> Y <- $\operatorname{rmvnorm}(n$, mean $=m u$, sigma $=$ Sigma $)$
colMeans (Y)
\#\# [1] 0.98121021 .9829380
$\operatorname{cov}(\mathrm{Y})$

Example vi

```
##
                [,1]
                                    [,2]
## [1,] 0.9982835 0.4906990
## [2,] 0.4906990 0.9489171
```

Y \% >\%
data.frame() \%>\%
ggplot(aes(X1, X2)) +
geom_density_2d()

Example vif

Other characterizations

There are at least two other ways to define the multivariate random distribution:

1. A p-dimensional random vector \mathbf{Y} is said to have a multivariate normal distribution if and only if every linear combination of \mathbf{Y} has a univariate normal distribution.
2. A p-dimensional random vector \mathbf{Y} is said to have a multivariate normal distribution if and only if its distribution maximises entropy over the class of random vectors with fixed mean μ and fixed covariance matrix Σ and support over \mathbb{R}^{p}.

Useful properties

- If $\mathbf{Y} \sim N_{p}(\mu, \Sigma), A$ is a $q \times p$ matrix, and $b \in \mathbb{R}^{q}$, then

$$
A \mathbf{Y}+b \sim N_{q}\left(A \mu+b, A \Sigma A^{T}\right)
$$

- If $\mathbf{Y} \sim N_{p}(\mu, \Sigma)$ then all subsets of \mathbf{Y} are normally distributed; that is, write
- $\mathbf{Y}=\binom{\mathbf{Y}_{1}}{\mathbf{Y}_{2}}, \mu=\binom{\mu_{1}}{\mu_{2}}$;
- $\Sigma=\left(\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right)$.
- Then $\mathbf{Y}_{1} \sim N_{r}\left(\mu_{1}, \Sigma_{11}\right)$ and $\mathbf{Y}_{2} \sim N_{p-r}\left(\mu_{2}, \Sigma_{22}\right)$.

Useful properties ii

- Assume the same partition as above. Then the following are equivalent:
- \mathbf{Y}_{1} and \mathbf{Y}_{2} are independent;
- $\Sigma_{12}=0$;
- $\operatorname{Cov}\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)=0$.

Exercise (J\&W 4.3)

Let $\left(Y_{1}, Y_{2}, Y_{3}\right) \sim N_{3}(\mu, \Sigma)$ with $\mu=(3,1,4)$ and

$$
\Sigma=\left(\begin{array}{ccc}
1 & -2 & 0 \\
-2 & 5 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Which of the following random variables are independent?
Explain.

1. Y_{1} and Y_{2}.
2. Y_{2} and Y_{3}.
3. $\left(Y_{1}, Y_{2}\right)$ and Y_{3}.
4. $0.5\left(Y_{1}+Y_{2}\right)$ and Y_{3}.
5. Y_{2} and $Y_{2}-\frac{5}{2} Y_{1}-Y_{3}$.

Conditional Normal Distributions i

- Theorem: Let $\mathbf{Y} \sim N_{p}(\mu, \Sigma)$, where

$$
\begin{aligned}
& \mathbf{Y}=\binom{\mathbf{Y}_{1}}{\mathbf{Y}_{2}}, \mu=\binom{\mu_{1}}{\mu_{2}} \\
& \Sigma \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
\end{aligned}
$$

- Then the conditional distribution of \mathbf{Y}_{1} given $\mathbf{Y}_{2}=y_{2}$ is multivariate normal $N_{r}\left(\mu_{1 \mid 2}, \Sigma_{1 \mid 2}\right)$, where

$$
\begin{aligned}
& -\mu_{1 \mid 2}=\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(y_{2}-\mu_{2}\right) \\
& \bullet \Sigma_{1 \mid 2}=\Sigma_{11}+\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
\end{aligned}
$$

Conditional Normal Distributions if

- Corrolary: Let $\mathbf{Y}_{2} \sim N_{p-r}\left(\mu_{2}, \Sigma_{22}\right)$ and assume that \mathbf{Y}_{1} given $\mathbf{Y}_{2}=y_{2}$ is multivariate normal $N_{r}\left(A y_{2}+b, \Omega\right)$, where Ω does not depend on y_{2}. Then

$$
\begin{aligned}
\mathbf{Y} & =\binom{\mathbf{Y}_{1}}{\mathbf{Y}_{2}} \sim N_{p}(\mu, \Sigma), \text { where } \\
& \text { - } \mu=\binom{A \mu_{2}+b}{\mu_{2}} \\
& \text { - } \Sigma=\left(\begin{array}{cc}
\Omega+A \Sigma_{22} A^{T} & A \Sigma_{22} \\
\Sigma_{22} A^{T} & \Sigma_{22}
\end{array}\right)
\end{aligned}
$$

Exercise

- Let $\mathbf{Y}_{2} \sim N_{1}(0,1)$ and assume

$$
\mathbf{Y}_{1} \left\lvert\, \mathbf{Y}_{2}=y_{2} \sim N_{2}\left(\binom{y_{2}+1}{2 y_{2}}, I_{2}\right)\right.
$$

Find the joint distribution of $\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)$.

Another important result

- Let $\mathbf{Y} \sim N_{p}(\mu, \Sigma)$, and let $\Sigma=L L^{T}$ be the Cholesky decomposition of Σ.
- We know that $\mathbf{Z}=L^{-1}(\mathbf{Y}-\mu)$ is normally distributed, with mean 0 and covariance matrix

$$
\operatorname{Cov}(\mathbf{Z})=L^{-1} \Sigma\left(L^{-1}\right)^{T}=I_{p} .
$$

- Therefore $(\mathbf{Y}-\mu)^{T} \Sigma^{-1}(\mathbf{Y}-\mu)$ is the sum of squared standard normal random variables.
- In other words, $(\mathbf{Y}-\mu)^{T} \Sigma^{-1}(\mathbf{Y}-\mu) \sim \chi^{2}(p)$.
- This can be seen as a generalization of the univariate result $\left(\frac{X-\mu}{\sigma}\right)^{2} \sim \chi^{2}(1)$.

Another important result if

- From this, we get a result about the probability that a multivariate normal falls within an ellipse:

$$
P\left((\mathbf{Y}-\mu)^{T} \Sigma^{-1}(\mathbf{Y}-\mu) \leq \chi^{2}(\alpha ; p)\right)=1-\alpha .
$$

- We can use this to construct a confidence region around the sample mean.

