Multivariate Random Variables

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Joint distributions

- Let X and Y be two random variables.
- The joint distribution function of X and Y is

$$
F(x, y)=P(X \leq x, Y \leq y)
$$

- More generally, let Y_{1}, \ldots, Y_{p} be p random variables.

Their joint distribution function is

$$
F\left(y_{1}, \ldots, y_{p}\right)=P\left(Y_{1} \leq y_{1}, \ldots, Y_{p} \leq y_{p}\right)
$$

Joint densities

- If F is absolutely continuous almost everywhere, there exists a function f called the density such that

$$
F\left(y_{1}, \ldots, y_{p}\right)=\int_{-\infty}^{y_{1}} \cdots \int_{-\infty}^{y_{p}} f\left(u_{1}, \ldots, u_{p}\right) d u_{1} \cdots d u_{p}
$$

- The joint moments are defined as follows:

$$
\begin{aligned}
& E\left(Y_{1}^{n_{1}} \cdots Y_{p}^{n_{p}}\right)= \\
& \quad \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} u_{1}^{n_{1}} \cdots u_{p}^{n_{p}} f\left(u_{1}, \ldots, u_{p}\right) d u_{1} \cdots d u_{p}
\end{aligned}
$$

- Exercise: Show that this is consistent with the univariate definition of $E\left(Y_{1}^{n_{1}}\right)$, i.e. $n_{2}=\cdots=n_{p}=0$.

Marginal distributions

- From the joint distribution function, we can recover the marginal distributions:

$$
F_{i}(x)=\lim _{\substack{y_{\rightarrow} \rightarrow \infty \\ j \neq i}} F\left(y_{1}, \ldots, y_{n}\right) .
$$

- More generally, we can find the joint distribution of a subset of variables by sending the other ones to infinity:

$$
F\left(y_{1}, \ldots, y_{r}\right)=\lim _{\substack{y_{j} \rightarrow \infty \\ j>r}} F\left(y_{1}, \ldots, y_{n}\right), \quad r<p .
$$

Marginal distributions ii

- Similarly, from the joint density function, we can recover the marginal densities:

$$
f_{i}(x)=\int_{-\infty}^{\infty} f\left(u_{1}, \ldots, u_{p}\right) d u_{1} \cdots \widehat{d u_{i}} \cdots d u_{p} .
$$

- In other words, we are integrating out the other variables.

Conditional distributions

- Let f_{1}, f_{2} be the densities of random variables Y_{1}, Y_{2}, respectively. Let f be the joint density.
- The conditional density of Y_{1} given Y_{2} is defined as

$$
f\left(y_{1} \mid y_{2}\right):=\frac{f\left(y_{1}, y_{2}\right)}{f_{2}\left(y_{2}\right)}
$$

whenever $f_{2}\left(y_{2}\right) \neq 0$ (otherwise it is equal to zero).

- Similarly, we can define the conditional density in $p>2$ variables, and we can also define a conditional density for Y_{1}, \ldots, Y_{r} given Y_{r+1}, \ldots, Y_{p}.

Expectations

- Let $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{p}\right)$ be a random vector.
- Its expectation is defined entry-wise:

$$
E(\mathbf{Y})=\left(E\left(Y_{1}\right), \ldots, E\left(Y_{p}\right)\right) .
$$

- Observation: The dependence structure has no impact on the expectation.

Covariance and Correlation i

- The multivariate generalization of the variance is the covariance matrix. It is defined as

$$
\operatorname{Cov}(\mathbf{Y})=E\left((\mathbf{Y}-\mu)(\mathbf{Y}-\mu)^{T}\right)
$$

where $\mu=E(\mathbf{Y})$.

- Exercise: The (i, j)-th entry of $\operatorname{Cov}(\mathbf{Y})$ is equal to

$$
\operatorname{Cov}\left(Y_{i}, Y_{j}\right) .
$$

Covariance and Correlation if

- Recall that we obtain the correlation from the covariance by dividing by the square root of the variances.
- Let V be the diagonal matrix whose i-th entry is $\operatorname{Var}\left(Y_{i}\right)$.
- In other words, V and $\operatorname{Cov}(\mathbf{Y})$ have the same diagonal.
- Then we define the correlation matrix as follows:

$$
\operatorname{Corr}(\mathbf{Y})=V^{-1 / 2} \operatorname{Cov}(\mathbf{Y}) V^{-1 / 2}
$$

- Exercise: The (i, j)-th entry of $\operatorname{Corr}(\mathbf{Y})$ is equal to

$$
\operatorname{Corr}\left(Y_{i}, Y_{j}\right)
$$

Example i

- Assume that

$$
\operatorname{Cov}(\mathbf{Y})=\left(\begin{array}{ccc}
4 & 1 & 2 \\
1 & 9 & -3 \\
2 & -3 & 25
\end{array}\right)
$$

- Then we know that

$$
V=\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 25
\end{array}\right)
$$

Example if

- Therefore, we can write

$$
V^{-1 / 2}=\left(\begin{array}{ccc}
0.5 & 0 & 0 \\
0 & 0.33 & 0 \\
0 & 0 & 0.2
\end{array}\right)
$$

- We can now compute the correlation matrix:

Example ifi

$$
\begin{aligned}
\operatorname{Corr}(\mathbf{Y}) & =\left(\begin{array}{ccc}
0.5 & 0 & 0 \\
0 & 0.33 & 0 \\
0 & 0 & 0.2
\end{array}\right)\left(\begin{array}{ccc}
4 & 1 & 2 \\
1 & 9 & -3 \\
2 & -3 & 25
\end{array}\right)\left(\begin{array}{ccc}
0.5 & 0 & 0 \\
0 & 0.33 & 0 \\
0 & 0 & 0.2
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0.17 & 0.2 \\
0.17 & 1 & -0.2 \\
0.2 & -0.2 & 1
\end{array}\right) .
\end{aligned}
$$

Measures of Overall Variability

- In the univariate case, the variance is a scalar measure of spread.
- In the multivariate case, the covariance is a matrix.
- No easy way to compare two distributions.
- For this reason, we have other notions of overall variability:

1. Generalized Variance: This is defined as the determinant of the covariance matrix.

$$
G V(\mathbf{Y})=\operatorname{det}(\operatorname{Cov}(\mathbf{Y}))
$$

2. Total Variance: This is defined as the trace of the covariance matrix.

$$
T V(\mathbf{Y})=\operatorname{tr}(\operatorname{Cov}(\mathbf{Y}))
$$

Examples

$$
\mathrm{A}<-\operatorname{matrix}(\mathrm{c}(5,4,4,5), \text { ncol }=2)
$$

results <- eigen(A, symmetric = TRUE, only.values = TRUE)
\# Generalized variance
prod(results\$values)
\#\# [1] 9

Examples if

```
\# Total variance sum(results\$values)
```

\#\# [1] 10
\# Compare this with the following
B <- matrix(c(5, -4, -4, 5), ncol = 2)
\# Generalized variance
\# $G V(A)=9$
$\operatorname{det}(B)$

Examples ifi

```
## [1] 9
# Total variance
# TV(A) = 10
sum(diag(B))
```

\#\# [1] 10

Measures of Overall Variability (cont'd)

- As we can see, we do lose some information:
- In matrix B, we saw that the two variables are negatively correlated, and yet we get the same values
- But $G V$ captures some information on dependence that TV does not.
- Compare the following covariance matrices:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right) .
$$

- Interpretation: A small value of the sampled Generalized Variance indicates either small scatter in data points or multicollinearity.

Geometric Interlude

- A random vector Y with positive definite covariance matrix Σ can be used to define a distance function on \mathbb{R}^{p} :

$$
d(x, y)=\sqrt{(x-y)^{T} \Sigma^{-1}(x-y)}
$$

- This is called the Mahalanobis distance induced by Σ.
- Exercise: This indeed satisfies the definition of a distance:

$$
\begin{aligned}
& \text { 1. } d(x, y)=d(y, x) \\
& \text { 2. } d(x, y) \geq 0 \text { and } d(x, x)=0 \Leftrightarrow x=0 \\
& \text { 3. } d(x, z) \leq d(x, y)+d(y, z)
\end{aligned}
$$

Geometric Interlude if

- Using this distance, we can construct hyper-ellipsoids in \mathbb{R}^{p} as the set of all points x such that

$$
d(x, 0)=1
$$

- Equivalently:

$$
x^{T} \Sigma^{-1} x=1
$$

- Since Σ^{-1} is symmetric, we can use the spectral decomposition to rewrite it as:

$$
\Sigma^{-1}=\sum_{i=1}^{p} \lambda_{i}^{-1} v_{i} v_{i}^{T}
$$

where $\lambda_{1}, \ldots, \lambda_{p}$ are the eigenvalues of Σ.

Geometric Interlude ifi

- We thus get a new parametrization if the hyper-ellipsoid:

$$
\sum_{i=1}^{p}\left(\frac{v_{i}^{T} x}{\sqrt{\lambda_{i}}}\right)^{2}=1
$$

- Theorem: The volume of this hyper-ellipsoid is equal to

$$
\frac{2 \pi^{p / 2}}{p \Gamma(p / 2)} \sqrt{\lambda_{1} \cdots \lambda_{p}}
$$

- In other words, the Generalized Variance is proportional to the square of the volume of the hyper-ellipsoid defined by the covariance matrix.
- Note: the square root of the determinant of a matrix (if it exists) is sometimes called the Pfaffian.

Example i

Sigma <- matrix $(c(1,0.5,0.5,1)$, ncol = 2)
\# First create a circle
theta_vect <- seq(0, $2 *$ pi, length.out $=100$)
circle <- cbind(cos(theta_vect), sin(theta_vect))
\# Then turn into ellipse
ellipse <- circle \%*\% Sigma

Example if

```
# Principal axes
result <- eigen(Sigma, symmetric = TRUE)
first <- result$values[1]*result$vectors[,1]
second <- result$values[2]*result$vectors[,2]
```


Example iif

$$
\begin{aligned}
& \text { \# Plot results } \\
& \text { plot }(e l l i p s e, \text { type }=' l ') \\
& \text { lines }(x=c(0, \text { first }[1]), \\
& y=c(0, \text { first }[2])) \\
& \text { lines }(x=c(0, \text { second[1]), } \\
& y=c(0, \text { second[2])) }
\end{aligned}
$$

Example iv

Example (cont'd)

```
# Generalized Variance
det(Sigma)
## [1] 0.75
# Predicted volume of the ellipse above
pi/(gamma(1))*sqrt(det(Sigma))
```

\#\# [1] 2.720699

Example (cont'd) ii

\# How can we estimate the area?
\# Monte Carlo simulation!
Sigma_inv <- solve(Sigma)

$$
\begin{aligned}
x_{-} 1<-\operatorname{runif}(1000 & , \min =\min (e l l i p s e[, 1]), \\
\max & =\max (\text { ellipse }[, 1])) \\
x_{-} 2<-\operatorname{runif}(1000 & , \min =\min (e l l i p s e[, 2]), \\
\max & =\max (\text { ellipse}[, 2]))
\end{aligned}
$$

X <- cbind (x_1, x_2)
distances <- apply(X, 1, function(row) \{
sqrt(t(row) \%*\% Sigma_inv \%*\% row)
\})

Example (cont'd) iif

```
# Estimate
length_x <- diff(range(ellipse[,1]))
length_y <- diff(range(ellipse[,2]))
area_rect <- length_x * length_y
```

area_rect * mean(distances <= 1)
\#\# [1] 2.679104

Statistical Independence

- The variables Y_{1}, \ldots, Y_{p} are said to be mutually independent if

$$
F\left(y_{1}, \ldots, y_{p}\right)=F\left(y_{1}\right) \cdots F\left(y_{p}\right) .
$$

- If Y_{1}, \ldots, Y_{p} admit a joint density f (with marginal densities f_{1}, \ldots, f_{p}), and equivalent condition is

$$
f\left(y_{1}, \ldots, y_{p}\right)=f\left(y_{1}\right) \cdots f\left(y_{p}\right) .
$$

- Important property: If Y_{1}, \ldots, Y_{p} are mutually independent, then their joint moments factor:

$$
E\left(Y_{1}^{n_{1}} \cdots Y_{p}^{n_{p}}\right)=E\left(Y_{1}^{n_{1}}\right) \cdots E\left(Y_{p}^{n_{p}}\right) .
$$

Linear Combination of Random Variables

- Let $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{p}\right)$ be a random vector. Let \mathbf{A} be a $q \times p$ matrix, and let $b \in \mathbb{R}^{q}$.
- Then the random vector $\mathbf{X}:=\mathbf{A Y}+b$ has the following properties:
- Expectation: $E(\mathbf{X})=\mathbf{A} E(\mathbf{Y})+b$;
- Covariance: $\operatorname{Cov}(\mathbf{X})=\mathbf{A} \operatorname{Cov}(\mathbf{Y}) \mathbf{A}^{T}$

Transformation of Random Variables

- More generally, let $h: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ be a one-to-one function with inverse $h^{-1}=\left(h_{1}^{-1}, \ldots, h_{p}^{-1}\right)$. Define $\mathbf{X}=h(\mathbf{Y})$.
- Let J be the Jacobian matrix of h^{-1} :

$$
\left(\begin{array}{ccc}
\frac{\partial h_{1}^{-1}}{\partial y_{1}} & \cdots & \frac{\partial h_{1}^{-1}}{\partial y_{p}} \\
\vdots & \ddots & \vdots \\
\frac{\partial h_{p}^{-1}}{\partial y_{1}} & \cdots & \frac{\partial h_{p}^{-1}}{\partial y_{p}}
\end{array}\right)
$$

- Then the density of \mathbf{X} is given by

$$
g\left(x_{1}, \ldots, x_{p}\right)=f\left(h_{1}^{-1}\left(y_{1}\right), \ldots, h_{p}^{-1}\left(y_{p}\right)\right)|\operatorname{det}(J)| .
$$

- This result is very useful for computing the density of transformations of normal random variables.

Properties of Sample Statistics i

- Let $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$ be a random sample from a p-dimensional distribution with mean μ and covariance matrix Σ.
- Sample mean: We define the sample mean $\overline{\mathbf{Y}}$ as follows:

$$
\overline{\mathbf{Y}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{Y}_{i}
$$

- Properties:
- $E(\overline{\mathbf{Y}})=\mu$ (i.e. $\overline{\mathbf{Y}}$ is an unbiased estimator of μ);
- $\operatorname{Cov}(\overline{\mathbf{Y}})=\frac{1}{n} \Sigma$.

Properties of Sample Statistics ii

- Sample covariance: We define the sample covariance S as follows:

$$
\mathbf{S}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)^{T}
$$

- Properties:
- $E(\mathbf{S})=\frac{n-1}{n} \Sigma$ (i.e. \mathbf{S} is a biased estimator of Σ);
- If we define $\tilde{\mathbf{S}}$ with n instead of $n-1$ in the denominator above, then $E(\tilde{\mathbf{S}})=\Sigma$ (i.e. $\tilde{\mathbf{S}}$ is an unbiased estimator of Σ).

