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Joint distributions

• Let X and Y be two random variables.
• The joint distribution function of X and Y is

F (x, y) = P (X ≤ x, Y ≤ y).

• More generally, let Y1, . . . , Yp be p random variables.
Their joint distribution function is

F (y1, . . . , yp) = P (Y1 ≤ y1, . . . , Yp ≤ yp).
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Joint densities

• If F is absolutely continuous almost everywhere, there
exists a function f called the density such that

F (y1, . . . , yp) =
∫ y1

−∞
· · ·

∫ yp

−∞
f(u1, . . . , up)du1 · · · dup.

• The joint moments are defined as follows:

E(Y n1
1 · · · Y np

p ) =∫ ∞

−∞
· · ·

∫ ∞

−∞
un1

1 · · · unp
p f(u1, . . . , up)du1 · · · dup.

• Exercise: Show that this is consistent with the univariate
definition of E(Y n1

1 ), i.e. n2 = · · · = np = 0.
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Marginal distributions i

• From the joint distribution function, we can recover the
marginal distributions:

Fi(x) = lim
yj→∞

j ̸=i

F (y1, . . . , yn).

• More generally, we can find the joint distribution of a
subset of variables by sending the other ones to infinity:

F (y1, . . . , yr) = lim
yj→∞

j>r

F (y1, . . . , yn), r < p.
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Marginal distributions ii

• Similarly, from the joint density function, we can recover
the marginal densities:

fi(x) =
∫ ∞

−∞
f(u1, . . . , up)du1 · · · d̂ui · · · dup.

• In other words, we are integrating out the other variables.
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Conditional distributions

• Let f1, f2 be the densities of random variables Y1, Y2,
respectively. Let f be the joint density.

• The conditional density of Y1 given Y2 is defined as

f(y1|y2) := f(y1, y2)
f2(y2)

,

whenever f2(y2) ̸= 0 (otherwise it is equal to zero).
• Similarly, we can define the conditional density in p > 2

variables, and we can also define a conditional density for
Y1, . . . , Yr given Yr+1, . . . , Yp.
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Expectations

• Let Y = (Y1, . . . , Yp) be a random vector.
• Its expectation is defined entry-wise:

E(Y) = (E(Y1), . . . , E(Yp)).

• Observation: The dependence structure has no impact
on the expectation.
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Covariance and Correlation i

• The multivariate generalization of the variance is the
covariance matrix. It is defined as

Cov(Y) = E
(
(Y − µ)(Y − µ)T

)
,

where µ = E(Y).
• Exercise: The (i, j)-th entry of Cov(Y) is equal to

Cov(Yi, Yj).
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Covariance and Correlation ii

• Recall that we obtain the correlation from the covariance
by dividing by the square root of the variances.

• Let V be the diagonal matrix whose i-th entry is Var(Yi).
• In other words, V and Cov(Y) have the same diagonal.

• Then we define the correlation matrix as follows:

Corr(Y) = V −1/2Cov(Y)V −1/2.

• Exercise: The (i, j)-th entry of Corr(Y) is equal to

Corr(Yi, Yj).
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Example i

• Assume that

Cov(Y) =


4 1 2
1 9 −3
2 −3 25

 .

• Then we know that

V =


4 0 0
0 9 0
0 0 25

 .
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Example ii

• Therefore, we can write

V −1/2 =


0.5 0 0
0 0.33 0
0 0 0.2

 .

• We can now compute the correlation matrix:
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Example iii

Corr(Y) =


0.5 0 0
0 0.33 0
0 0 0.2




4 1 2
1 9 −3
2 −3 25




0.5 0 0
0 0.33 0
0 0 0.2



=


1 0.17 0.2

0.17 1 −0.2
0.2 −0.2 1

 .

12



Measures of Overall Variability

• In the univariate case, the variance is a scalar measure of
spread.

• In the multivariate case, the covariance is a matrix.
• No easy way to compare two distributions.
• For this reason, we have other notions of overall

variability:

1. Generalized Variance: This is defined as the
determinant of the covariance matrix.

GV (Y) = det(Cov(Y)).

2. Total Variance: This is defined as the trace of the
covariance matrix.

TV (Y) = tr(Cov(Y)). 13



Examples i

A <- matrix(c(5, 4, 4, 5), ncol = 2)

results <- eigen(A, symmetric = TRUE,
only.values = TRUE)

# Generalized variance
prod(results$values)

## [1] 9
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Examples ii

# Total variance
sum(results$values)

## [1] 10

# Compare this with the following
B <- matrix(c(5, -4, -4, 5), ncol = 2)

# Generalized variance
# GV(A) = 9
det(B)

15



Examples iii

## [1] 9

# Total variance
# TV(A) = 10
sum(diag(B))

## [1] 10
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Measures of Overall Variability (cont’d)

• As we can see, we do lose some information:
• In matrix B, we saw that the two variables are

negatively correlated, and yet we get the same values
• But GV captures some information on dependence that

TV does not.
• Compare the following covariance matrices:(

1 0
0 1

)
,

(
1 0.5

0.5 1

)
.

• Interpretation: A small value of the sampled Generalized
Variance indicates either small scatter in data points or
multicollinearity.
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Geometric Interlude i

• A random vector Y with positive definite covariance
matrix Σ can be used to define a distance function on Rp:

d(x, y) =
√

(x − y)T Σ−1(x − y).

• This is called the Mahalanobis distance induced by Σ.
• Exercise: This indeed satisfies the definition of a

distance:
1. d(x, y) = d(y, x)
2. d(x, y) ≥ 0 and d(x, x) = 0 ⇔ x = 0
3. d(x, z) ≤ d(x, y) + d(y, z)
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Geometric Interlude ii
• Using this distance, we can construct hyper-ellipsoids in

Rp as the set of all points x such that

d(x, 0) = 1.

• Equivalently:
xT Σ−1x = 1.

• Since Σ−1 is symmetric, we can use the spectral
decomposition to rewrite it as:

Σ−1 =
p∑

i=1
λ−1

i viv
T
i ,

where λ1, . . . , λp are the eigenvalues of Σ.
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Geometric Interlude iii
• We thus get a new parametrization if the hyper-ellipsoid:

p∑
i=1

(
vT

i x√
λi

)2

= 1.

• Theorem: The volume of this hyper-ellipsoid is equal to

2πp/2

pΓ(p/2)
√

λ1 · · · λp.

• In other words, the Generalized Variance is proportional
to the square of the volume of the hyper-ellipsoid defined
by the covariance matrix.

• Note: the square root of the determinant of a matrix (if
it exists) is sometimes called the Pfaffian.
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Example i

Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)

# First create a circle
theta_vect <- seq(0, 2*pi, length.out = 100)
circle <- cbind(cos(theta_vect), sin(theta_vect))
# Then turn into ellipse
ellipse <- circle %*% Sigma
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Example ii

# Principal axes
result <- eigen(Sigma, symmetric = TRUE)

first <- result$values[1]*result$vectors[,1]
second <- result$values[2]*result$vectors[,2]
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Example iii

# Plot results
plot(ellipse, type = 'l')
lines(x = c(0, first[1]),

y = c(0, first[2]))
lines(x = c(0, second[1]),

y = c(0, second[2]))
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Example iv

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ellipse[,1]

el
lip

se
[,2

]

24



Example (cont’d) i

# Generalized Variance
det(Sigma)

## [1] 0.75

# Predicted volume of the ellipse above
pi/(gamma(1))*sqrt(det(Sigma))

## [1] 2.720699
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Example (cont’d) ii

# How can we estimate the area?
# Monte Carlo simulation!
Sigma_inv <- solve(Sigma)

x_1 <- runif(1000, min = min(ellipse[,1]),
max = max(ellipse[,1]))

x_2 <- runif(1000, min = min(ellipse[,2]),
max = max(ellipse[,2]))

X <- cbind(x_1, x_2)
distances <- apply(X, 1, function(row) {
sqrt(t(row) %*% Sigma_inv %*% row)
})
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Example (cont’d) iii

# Estimate
length_x <- diff(range(ellipse[,1]))
length_y <- diff(range(ellipse[,2]))
area_rect <- length_x * length_y

area_rect * mean(distances <= 1)

## [1] 2.679104

27



Statistical Independence

• The variables Y1, . . . , Yp are said to be mutually
independent if

F (y1, . . . , yp) = F (y1) · · · F (yp).

• If Y1, . . . , Yp admit a joint density f (with marginal
densities f1, . . . , fp), and equivalent condition is

f(y1, . . . , yp) = f(y1) · · · f(yp).

• Important property: If Y1, . . . , Yp are mutually
independent, then their joint moments factor:

E(Y n1
1 · · · Y np

p ) = E(Y n1
1 ) · · · E(Y np

p ).
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Linear Combination of Random Variables

• Let Y = (Y1, . . . , Yp) be a random vector. Let A be a
q × p matrix, and let b ∈ Rq.

• Then the random vector X := AY + b has the following
properties:

• Expectation: E(X) = AE(Y) + b;
• Covariance: Cov(X) = ACov(Y)AT
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Transformation of Random Variables

• More generally, let h : Rp → Rp be a one-to-one function
with inverse h−1 = (h−1

1 , . . . , h−1
p ). Define X = h(Y).

• Let J be the Jacobian matrix of h−1:
∂h−1

1
∂y1

· · · ∂h−1
1

∂yp... . . . ...
∂h−1

p

∂y1
· · · ∂h−1

p

∂yp

 .

• Then the density of X is given by

g(x1, . . . , xp) = f(h−1
1 (y1), . . . , h−1

p (yp))|det(J)|.

• This result is very useful for computing the density of
transformations of normal random variables.
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Properties of Sample Statistics i

• Let Y1, . . . , Yn be a random sample from a p-dimensional
distribution with mean µ and covariance matrix Σ.

• Sample mean: We define the sample mean Ȳ as follows:

Ȳ = 1
n

n∑
i=1

Yi.

• Properties:
• E(Ȳ) = µ (i.e. Ȳ is an unbiased estimator of µ);
• Cov(Ȳ) = 1

nΣ.
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Properties of Sample Statistics ii

• Sample covariance: We define the sample covariance S
as follows:

S = 1
n − 1

n∑
i=1

(Yi − Ȳ)(Yi − Ȳ)T .

• Properties:
• E(S) = n−1

n Σ (i.e. S is a biased estimator of Σ);
• If we define S̃ with n instead of n − 1 in the

denominator above, then E(S̃) = Σ (i.e. S̃ is an
unbiased estimator of Σ).
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