
Quadratic forms and Ellipses
Max Turgeon
19/09/2019

In these notes, I want to clarify a few concepts that were discussed in class.

Let A be a p × p positive definite matrix. Let λ1 ≥ · · · ≥ λp be its eigenvalues, with corresponding
eigenvectors v1, . . . , vp; we assume all eigenvectors have unit norm. The matrix A induces a metric on Rp

called the Mahalanobis distance:

d(x, y) =
√

(x− y)TA−1(x− y).

Let µ ∈ Rp be a point of interest. For a fixed constant c > 0, the points x that are at a distance c from µ
form a hyperellipsoid in Rp. Equivently, we can define this hyperellipsoid as{

x ∈ Rp | (x− µ)TA−1(x− µ) = c2} .
As a hyperellipsoid is completely determined by its axes, yet another equivalent definition is that this
hyperellipsoid has axes

c
√
λjvj , for j = 1, . . . , p.

Now, let A−1 = LLT be the Cholesky decomposition of A−1. We then have

(x− µ)TA−1(x− µ) = c2 ⇐⇒ (x− µ)T (LLT )(x− µ) = c2

⇐⇒ (LT (x− µ))T (LT (x− µ)) = c2

In other words, x falls on the hyperellipsoid centered around µ if and only if y = LT (x − µ) falls on a
hypershpere of radius c centered around the origin.

Therefore, to generate points on the hyperellipsoid, we can

1. Generate points u on the hypersphere of radius c centered around the origin.

2. Transform v = (LT )−1u+ µ.

R code example

In this section, I give an example of transforming a circle into an ellipse, and I demonstrate that we can get
the axes from the eigendecomposition.

# Pick a positive definite matrix in two dimensions
A <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)

# We also pick a point and a radius
mu <- c(1, 2)
c <- 2

1



# First create a circle of radius c
theta_vect <- seq(0, 2*pi, length.out = 100)
circle <- c * cbind(cos(theta_vect), sin(theta_vect))

plot(circle, type = 'l',
xlab = "", ylab = "")

−2 −1 0 1 2

−
2

−
1

0
1

2

# Compute inverse Cholesky
transf_mat <- solve(chol(solve(A)))

# Then turn circle into ellipse
ellipse <- circle %*% t(transf_mat)
# Then translate
ellipse <- t(apply(ellipse, 1, function(row) row + mu))

plot(ellipse, type = 'l',
xlab = "", ylab = "")

points(mu[1], mu[2])

2



−1 0 1 2 3

0
1

2
3

4

# Compute the eigendecomposition
decomp <- eigen(A, symmetric = TRUE)

first_axis <- c*sqrt(decomp$value[1])*decomp$vectors[,1]
second_axis <- c*sqrt(decomp$value[2])*decomp$vectors[,2]

# Plot everything together
plot(ellipse, type = 'l',

xlab = "", ylab = "")
points(mu[1], mu[2])

lines(x = c(mu[1], first_axis[1] + mu[1]),
y = c(mu[2], first_axis[2] + mu[2]))

lines(x = c(mu[1], second_axis[1] + mu[1]),
y = c(mu[2], second_axis[2] + mu[2]))

3



−1 0 1 2 3

0
1

2
3

4

You can find an animation of this process (i.e. circle to ellipsis followed by a translation) on the course
website: https://www.maxturgeon.ca/f19-stat4690/ellipse.gif

4

https://www.maxturgeon.ca/f19-stat4690/ellipse.gif

	R code example

