Quadratic forms and Ellipses Max Turgeon 19/09/2019

In these notes, I want to clarify a few concepts that were discussed in class.

Let A be a $p \times p$ positive definite matrix. Let $\lambda_1 \geq \cdots \geq \lambda_p$ be its eigenvalues, with corresponding eigenvectors v_1, \ldots, v_p ; we assume all eigenvectors have unit norm. The matrix A induces a metric on \mathbb{R}^p called the *Mahalanobis distance*:

$$d(x,y) = \sqrt{(x-y)^T A^{-1}(x-y)}.$$

Let $\mu \in \mathbb{R}^p$ be a point of interest. For a fixed constant c > 0, the points x that are at a distance c from μ form a *hyperellipsoid* in \mathbb{R}^p . Equivently, we can define this hyperellipsoid as

$$\left\{ x \in \mathbb{R}^p \mid (x - \mu)^T A^{-1} (x - \mu) = c^2 \right\}.$$

As a hyperellipsoid is completely determined by its axes, yet another equivalent definition is that this hyperellipsoid has axes

$$c\sqrt{\lambda_j v_j}, \quad \text{for } j = 1, \dots, p$$

Now, let $A^{-1} = LL^T$ be the Cholesky decomposition of A^{-1} . We then have

$$(x-\mu)^T A^{-1}(x-\mu) = c^2 \iff (x-\mu)^T (LL^T)(x-\mu) = c^2$$
$$\iff (L^T (x-\mu))^T (L^T (x-\mu)) = c^2$$

In other words, x falls on the hyperellipsoid centered around μ if and only if $y = L^T(x - \mu)$ falls on a hypershipere of radius c centered around the origin.

Therefore, to generate points on the hyperellipsoid, we can

- 1. Generate points u on the hypersphere of radius c centered around the origin.
- 2. Transform $v = (L^T)^{-1}u + \mu$.

R code example

In this section, I give an example of transforming a circle into an ellipse, and I demonstrate that we can get the axes from the eigendecomposition.

```
# Pick a positive definite matrix in two dimensions
A <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)
# We also pick a point and a radius
mu <- c(1, 2)
c <- 2</pre>
```


You can find an animation of this process (i.e. circle to ellipsis followed by a translation) on the course website: https://www.maxturgeon.ca/f19-stat4690/ellipse.gif