Quadratic forms and Ellipses

Max Turgeon
19/09/2019

In these notes, I want to clarify a few concepts that were discussed in class.
Let A be a $p \times p$ positive definite matrix. Let $\lambda_{1} \geq \cdots \geq \lambda_{p}$ be its eigenvalues, with corresponding eigenvectors v_{1}, \ldots, v_{p}; we assume all eigenvectors have unit norm. The matrix A induces a metric on \mathbb{R}^{p} called the Mahalanobis distance:

$$
d(x, y)=\sqrt{(x-y)^{T} A^{-1}(x-y)}
$$

Let $\mu \in \mathbb{R}^{p}$ be a point of interest. For a fixed constant $c>0$, the points x that are at a distance c from μ form a hyperellipsoid in \mathbb{R}^{p}. Equivently, we can define this hyperellipsoid as

$$
\left\{x \in \mathbb{R}^{p} \mid(x-\mu)^{T} A^{-1}(x-\mu)=c^{2}\right\} .
$$

As a hyperellipsoid is completely determined by its axes, yet another equivalent definition is that this hyperellipsoid has axes

$$
c \sqrt{\lambda_{j}} v_{j}, \quad \text { for } j=1, \ldots, p
$$

Now, let $A^{-1}=L L^{T}$ be the Cholesky decomposition of A^{-1}. We then have

$$
\begin{aligned}
(x-\mu)^{T} A^{-1}(x-\mu)=c^{2} & \Longleftrightarrow(x-\mu)^{T}\left(L L^{T}\right)(x-\mu)=c^{2} \\
& \Longleftrightarrow\left(L^{T}(x-\mu)\right)^{T}\left(L^{T}(x-\mu)\right)=c^{2}
\end{aligned}
$$

In other words, x falls on the hyperellipsoid centered around μ if and only if $y=L^{T}(x-\mu)$ falls on a hypershpere of radius c centered around the origin.
Therefore, to generate points on the hyperellipsoid, we can

1. Generate points u on the hypersphere of radius c centered around the origin.
2. Transform $v=\left(L^{T}\right)^{-1} u+\mu$.

R code example

In this section, I give an example of transforming a circle into an ellipse, and I demonstrate that we can get the axes from the eigendecomposition.

```
# Pick a positive definite matrix in two dimensions
A <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)
# We also pick a point and a radius
mu <- c(1, 2)
c <- 2
```

\# First create a circle of radius c
theta_vect <- seq(0, 2*pi, length.out = 100)
circle <- c * cbind(cos(theta_vect), sin(theta_vect))
plot(circle, type = 'l',
xlab = "", ylab = "")

\# Compute inverse Cholesky
transf_mat <- solve(chol(solve(A)))
\# Then turn circle into ellipse
ellipse <- circle $\%$ \% t (transf_mat)
\# Then translate
ellipse <- t(apply(ellipse, 1, function(row) row + mu))
plot(ellipse, type = 'l',
xlab = "", ylab = "")
points(mu[1], mu[2])

\# Compute the eigendecomposition
decomp <- eigen(A, symmetric = TRUE)
first_axis <- c*sqrt(decomp\$value[1])*decomp\$vectors[,1]
second_axis <- c*sqrt(decomp\$value[2])*decomp\$vectors[,2]
\# Plot everything together
plot(ellipse, type = 'l',
xlab = "", ylab = "")
points(mu[1], mu[2])
lines ($x=c\left(m u[1], f i r s t _a x i s[1] ~+~ m u[1]\right)$,
$y=c(m u[2]$, first_axis[2] $+m u[2]))$
lines($x=c(m u[1]$, second_axis[1] $+m u[1])$,
$y=c(m u[2]$, second_axis[2] + mu[2]))

You can find an animation of this process (i.e. circle to ellipsis followed by a translation) on the course website: https://www.maxturgeon.ca/f19-stat4690/ellipse.gif

