Review of Linear Algebra

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Basic Matrix operations

Matrix algebra and R

- Matrix operations in R are very fast.
- This includes various class of operations:
 - Matrix addition, scalar multiplication, matrix multiplication, matrix-vector multiplication
 - Standard functions like determinant, rank, condition number, etc.
 - Matrix decompositions, e.g. eigenvalue, singular value, Cholesky, QR, etc.
 - Support for *sparse* matrices, i.e. matrices where a significant number of entries are exactly zero.

```
A <- matrix(c(1, 2, 3, 4), nrow = 2, ncol = 2)
A
```

[,1] [,2]
[1,] 1 3
[2,] 2 4

Determinant
det(A)

[1] -2

Matrix functions ii

```
# Rank
library(Matrix)
rankMatrix(A)
```

[1] 2

- ## attr(,"method")
- ## [1] "tolNorm2"
- ## attr(,"useGrad")
- ## [1] FALSE
- ## attr(,"tol")
- ## [1] 4.440892e-16

Matrix functions iii

Condition number
kappa(A)

[1] 18.77778

How to compute the trace?
sum(diag(A))

[1] 5

Matrix functions iv

Transpose t(A)

[,1] [,2] ## [1,] 1 2 ## [2,] 3 4

Inverse solve(A)

Matrix functions v

- ## [,1] [,2] ## [1,] -2 1.5
- ## [2,] 1 -0.5
- A %*% solve(A) # CHECK
- ## [,1] [,2] ## [1,] 1 0 ## [2,] 0 1

A <- matrix(c(1, 2, 3, 4), nrow = 2, ncol = 2) B <- matrix(c(4, 3, 2, 1), nrow = 2, ncol = 2)

Addition

A + B

[,1] [,2]
[1,] 5 5
[2,] 5 5

Scalar multiplication 3*A

- ## [,1] [,2]
- ## [1,] 3 9
- ## [2,] 6 12

Matrix multiplication
A %*% B

##		[,1]	[,2]
##	[1,]	13	5
##	[2,]	20	8

Hadamard product aka entrywise multiplication A \ast B

##		[,1]	[,2]
##	[1,]	4	6
##	[2.]	6	4

Matrix operations iv

```
# Matrix-vector product
vect <- c(1, 2)
A %*% vect</pre>
```

- ## [,1] ## [1,] 7
- ## [2,] 10
- # BE CAREFUL: R recycles vectors
 A * vect

Matrix operations v

[,1] [,2] ## [1,] 1 3 ## [2,] 4 8

Eigenvalues and Eigenvectors

- Let \mathbf{A} be a square $n \times n$ matrix.
- The equation

$$\det(\mathbf{A} - \lambda I_n) = 0$$

is called the *characteristic equation* of A.

• This is a polynomial equation of degree *n*, and its roots are called the *eigenvalues* of **A**.

Example

Let

$$\mathbf{A} = \begin{pmatrix} 1 & 0.5\\ 0.5 & 1 \end{pmatrix}.$$

Then we have

$$det(\mathbf{A} - \lambda I_2) = (1 - \lambda)^2 - 0.25$$
$$= (\lambda - 1.5)(\lambda - 0.5)$$

Therefore, A has two (real) eigenvalues, namely

$$\lambda_1 = 1.5, \lambda_2 = 0.5.$$

Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A (with multiplicities).

1.
$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i;$$

- 2. det(\mathbf{A}) = $\prod_{i=1}^{n} \lambda_i$;
- 3. The eigenvalues of \mathbf{A}^k are $\lambda_1^k, \ldots, \lambda_n^k$, for k a nonnegative integer;
- 4. If A is invertible, then the eigenvalues of A^{-1} are $\lambda_1^{-1}, \ldots, \lambda_n^{-1}$.

Eigenvectors

- If λ is an eigenvalues of A, then (by definition) we have det(A − λI_n) = 0.
- In other words, the following equivalent statements hold:
 - The matrix $\mathbf{A} \lambda I_n$ is singular;
 - The kernel space of A λI_n is nontrivial (i.e. not equal to the zero vector);
 - The system of equations (A λI_n)v = 0 has a nontrivial solution;
 - There exists a nonzero vector v such that

$$\mathbf{A}v = \lambda v.$$

• Such a vector is called an *eigenvector* of A.

Example (cont'd) i

Recall that we had

$$\mathbf{A} = \begin{pmatrix} 1 & 0.5\\ 0.5 & 1 \end{pmatrix},$$

and we determined that $0.5\ {\rm was}$ an eigenvalue of ${\bf A}.$

We therefore have

$$\mathbf{A} - 0.5I_2 = \begin{pmatrix} 0.5 & 0.5\\ 0.5 & 0.5 \end{pmatrix}.$$

As we can see, any vector v of the form (x, -x) satisfies

$$(\mathbf{A} - 0.5I_2)v = (0, 0).$$

In other words, we not only get a single eigenvector, but a whole subspace of \mathbb{R}^2 . By convention, we usually select as a represensative a vector of norm 1, e.g.

$$v = \left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right).$$

Alternatively, instead of finding the eigenvector by inspection, we can use the reduced row-echelon form of $A - 0.5I_2$, which is given by

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

Therefore, the solutions to $(\mathbf{A} - 0.5I_2)v$, with v = (x, y) are given by a single equation, namely y + x = 0, or y = -x.

```
A \leftarrow matrix(c(1, 0.5, 0.5, 1), nrow = 2)
```

```
result <- eigen(A)</pre>
```

```
names(result)
```

[1] "values" "vectors"

result\$values

[1] 1.5 0.5

result\$vectors

[,1] [,2] ## [1,] 0.7071068 -0.7071068

[2,] 0.7071068 0.7071068

1/sqrt(2)

[1] 0.7071068

- A matrix A is called *symmetric* if $A^T = A$.
- **Proposition 1**: If A is (real) symmetric, then its eigenvalues are real.

Proof: Let λ be an eigenvalue of A, and let $v \neq 0$ be an eigenvector corresponding to this eigenvalue. Then we have

Symmetric matrices ii

$$\begin{split} \lambda \bar{v}^T v &= \bar{v}^T (\lambda v) \\ &= \bar{v}^T (\mathbf{A} v) \\ &= (\mathbf{A}^T \bar{v})^T v \\ &= (\mathbf{A} \bar{v})^T v \qquad (\mathbf{A} \text{ is symmetric}) \\ &= (\overline{\mathbf{A}} v)^T v \qquad (\mathbf{A} \text{ is real}) \\ &= \bar{\lambda} \bar{v}^T v. \end{split}$$

Since we have $v \neq 0$, we conclude that $\lambda = \overline{\lambda}$, i.e. λ is real.

 Proposition 2: If A is (real) symmetric, then eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof: Let λ_1, λ_2 be distinct eigenvalues, and let $v_1 \neq 0, v_2 \neq 0$ be corresponding eigenvectors. Then we have

$$\lambda_1 v_1^T v_2 = (\mathbf{A} v_1)^T v_2$$

= $v_1^T \mathbf{A}^T v_2$
= $v_1^T \mathbf{A} v_2$ (**A** is symmetric)
= $v_1^T (\lambda_2 v_2)$
= $\lambda_2 v_1^T v_2$.

Since $\lambda_1 \neq \lambda_2$, we conclude that $v_1^T v_2 = 0$, i.e. v_1 and v_2 are orthogonal.

Spectral Decomposition i

- Putting these two propositions together, we get the *Spectral Decomposition* for symmetric matrices.
- Theorem: Let A be an n × n symmetric matrix, and let λ₁ ≥ · · · ≥ λ_n be its eigenvalues (with multiplicity). Then there exist vectors v₁, . . . , v_n such that
 - 1. $\mathbf{A}v_i = \lambda_i v_i$, i.e. v_i is an eigenvector, for all i;
 - 2. If $i \neq j$, then $v_i^T v_j = 0$, i.e. they are orthogonal;
 - 3. For all *i*, we have $v_i^T v_i = 1$, i.e. they have unit norm;
 - 4. We can write $\mathbf{A} = \sum_{i=1}^{n} \lambda_i v_i v_i^T$.

Sketch of a proof:

Spectral Decomposition ii

- 1. We are saying that we can find n eigenvectors. This means that if an eigenvalue λ has multiplicity m (as a root of the characteristic polynomial), then the dimension of its *eigenspace* (i.e. the subspace of vectors satisfying $\mathbf{A}v = \lambda v$) is also equal to m. This is not necessarily the case for a general matrix \mathbf{A} .
- 2. If $\lambda_i \neq \lambda_j$, this is simply a consequence of Proposition 2. Otherwise, find a basis of the eigenspace and turn it into an orthogonal basis using the Gram-Schmidt algorithm.
- 3. This is one is straightforward: we are simply saying that we can choose the vectors so that they have unit norm.

Spectral Decomposition iii

4. First, note that if Λ is a diagonal matrix with $\lambda_1, \ldots, \lambda_n$ on the diagonal, and P is a matrix whose *i*-th column is v_i , then $\mathbf{A} = \sum_{i=1}^n \lambda_i v_i v_i^T$ is equivalent to

 $\mathbf{A} = P \Lambda P^T.$

Then 4. is a consequence of the change of basis theorem: if we change the basis from the standard one to $\{v_1, \ldots, v_n\}$, then A acts by scalar multiplication in each direction, i.e. it is represented by a diagonal matrix Λ .

We looked at

$$\mathbf{A} = \begin{pmatrix} 1 & 0.5\\ 0.5 & 1 \end{pmatrix},$$

and determined that the eigenvalues where 1.5, 0.5, with corresponding eigenvectors $\left(1/\sqrt{2}, 1/\sqrt{2}\right)$ and $\left(1/\sqrt{2}, -1/\sqrt{2}\right)$.

Examples ii

```
v1 <- c(1/sqrt(2), 1/sqrt(2))
v2 <- c(1/sqrt(2), -1/sqrt(2))</pre>
```

```
Lambda <- diag(c(1.5, 0.5))
P <- cbind(v1, v2)
```

```
P %*% Lambda %*% t(P)
```

```
## [,1] [,2]
## [1,] 1.0 0.5
## [2,] 0.5 1.0
```

Examples iii

Now let's look at a random matrix---A <- matrix(rnorm(3 * 3), ncol = 3, nrow = 3)
Let's make it symmetric
A[lower.tri(A)] <- A[upper.tri(A)]
A</pre>

[,1] [,2] [,3]
[1,] -0.2550974 -0.5047826 0.2166169
[2,] -0.5047826 -0.2792298 0.0953815
[3,] 0.2166169 0.0953815 -0.5734243

```
result <- eigen(A, symmetric = TRUE)
Lambda <- diag(result$values)
P <- result$vectors</pre>
```

P %*% Lambda %*% t(P)

[,1] [,2] [,3]
[1,] -0.2550974 -0.5047826 0.2166169
[2,] -0.5047826 -0.2792298 0.0953815
[3,] 0.2166169 0.0953815 -0.5734243

How to check if they are equal? all.equal(A, P %*% Lambda %*% t(P))

[1] TRUE

Let A be a real symmetric matrix, and let $\lambda_1 \geq \cdots \geq \lambda_n$ be its (real) eigenvalues.

- 1. If $\lambda_i > 0$ for all *i*, we say **A** is *positive definite*.
- 2. If the inequality is not strict, if $\lambda_i \ge 0$, we say A is *positive semidefinite*.
- 3. Similary, if $\lambda_i < 0$ for all *i*, we say **A** is *negative definite*.
- 4. If the inequality is not strict, if $\lambda_i \leq 0$, we say A is *negative semidefinite*.

Note: If A is *positive-definite*, then it is invertible!

Matrix Square Root i

- Let A be a positive semidefinite symmetric matrix.
- By the Spectral Decomposition, we can write

$$\mathbf{A} = P \Lambda P^T.$$

- Since A is positive-definite, we know that the elements on the diagonal of Λ are positive.
- Let Λ^{1/2} be the diagonal matrix whose entries are the square root of the entries on the diagonal of Λ.
- For example:

$$\Lambda = \begin{pmatrix} 1.5 & 0 \\ 0 & 0.5 \end{pmatrix} \Rightarrow \Lambda^{1/2} = \begin{pmatrix} 1.2247 & 0 \\ 0 & 0.7071 \end{pmatrix}.$$

Matrix Square Root ii

• We define the square root $A^{1/2}$ of A as follows:

 $\mathbf{A}^{1/2} := P \Lambda^{1/2} P^T.$

• Check:

$$\mathbf{A}^{1/2}\mathbf{A}^{1/2} = (P\Lambda^{1/2}P^T)(P\Lambda^{1/2}P^T)$$

= $P\Lambda^{1/2}(P^TP)\Lambda^{1/2}P^T$
= $P\Lambda^{1/2}\Lambda^{1/2}P^T$ (*P* is orthogonal)
= $P\Lambda P^T$
= \mathbf{A}

- Be careful: your intuition about square roots of positive real numbers doesn't translate to matrices.
 - In particular, matrix square roots are **not** unique (unless you impose further restrictions).

Cholesky Decomposition

- The most common way to obtain a square root matrix for a positive definite matrix A is via the *Cholesky decomposition*.
- There exists a unique matrix L such that:
 - L is lower triangular (i.e. all entries above the diagonal are zero);
 - The entries on the diagonal are positive;
 - $\mathbf{A} = LL^T$.
- For matrix square roots, the Cholesky decomposition should be prefered to the eigenvalue decomposition because:
 - It is computationally more efficient;
 - It is numerically more stable.

```
A \leftarrow matrix(c(1, 0.5, 0.5, 1), nrow = 2)
```

```
# Eigenvalue method
result <- eigen(A)
Lambda <- diag(result$values)
P <- result$vectors
A_sqrt <- P %*% Lambda^0.5 %*% t(P)</pre>
```

all.equal(A, A_sqrt %*% A_sqrt) # CHECK

[1] TRUE

Example ii

Cholesky method
It's upper triangular!
(L <- chol(A))</pre>

##		[,1]	[,2]
##	[1,]	1	0.5000000
##	[2,]	0	0.8660254

all.equal(A, t(L) %*% L) # CHECK

[1] TRUE

Power method

Introduction to numerical algebra

- As presented in these notes, we can find the eigenvalue decomposition by
 - 1. Finding the roots of a degree n polynomial.
 - 2. For each root, find the solutions to a system of linear equations.
- Problem: no exact formula for roots of a generic polynomial when n > 4.
 - So we need to find approximate solutions
- Other problem: approximation errors for eigenvalues propagate to eigenvectors
- Need more stable algorithms
- This is what numerical algebra is about. For a good reference, I recommend *Matrix Computations* by Golub and Van Loan.

Power Method i

- We'll discuss one approach to finding the leading eigenvector, i.e. the eigenvector corresponding to the largest eigenvalue (in absolute value).
- **Note**: We have to assume that the largest eigenvalue (in absolute value) is unique.
- Algorithm:
 - 1. Let v_0 be an initial vector with unit norm.
 - 2. At step k, define

$$v_{k+1} = \frac{\mathbf{A}v_k}{\|\mathbf{A}v_k\|},$$

where ||v|| is the norm of the vector v.

Power Method ii

- 3. Then the sequence v_k converges to the desired eigenvector.
- 4. The corresponding eigenvalue is defined by

$$\lambda = \lim_{k \to \infty} \frac{v_k^T \mathbf{A} v_k}{v_k^T v_k}.$$

- Comment: unless v₀ is orthogonal to the eigenvector we are looking for, we have theoretical guarantees of convergence.
 - In practice, we can pick v₀ randomly, since the probability a random vector is orthogonal to the eigenvector is zero.

```
set.seed(123)
A \leftarrow matrix(rnorm(3*3), ncol = 3)
# Make A symmetric
A[lower.tri(A)] <- A[upper.tri(A)]
# Set initial value
v current <- rnorm(3)
v current <- v current/norm(v current, type = "2")</pre>
```

Example ii

```
# We'll perform 100 iterations
for (i in seq len(100)) {
  # Save result from previous iteration
  v previous <- v current
  # Compute matrix product
  numerator <- A %*% v current
  # Normalize
  v current <- numerator/norm(numerator, type = "2")
}
```

v_current

Example iii

##		[,1]
##	[1,]	-0.3318109
##	[2,]	0.5345952
##	[3,]	0.7772448

Corresponding eigenvalue
num <- t(v_current) %*% A %*% v_current
denom <- t(v_current) %*% v_current
num/denom</pre>

[,1] ## [1,] -1.75374

Example iv

CHECK results

result <- eigen(A, symmetric = TRUE)
result\$values[which.max(abs(result\$values))]</pre>

[1] -1.75374

result\$vectors[,which.max(abs(result\$values))]

[1] 0.3318109 -0.5345952 -0.7772448

• Note that we did not get the same eigenvector: they differ by -1.

Visualization

Blue is the objective; the sequence goes from green to red.

Singular Value Decomposition

Singular Value Decomposition i

- We saw earlier that real symmetric matrices are diagonalizable, i.e. they admit a decomposition of the form PΛP^T where
 - Λ is diagonal;
 - P is orthogonal, i.e. $PP^T = P^T P = I$.
- For a general n × p matrix A, we have the Singular Value Decomposition (SVD).
- We can write $\mathbf{A} = UDV^T$, where
 - U is an $n \times n$ orthonal matrix;
 - V is a p × p orthogonal matrix;
 - D is an $n \times p$ diagonal matrix.

- We say that:
 - the columns of U are the *left-singular vectors* of A;
 - the columns of V are the *right-singular vectors* of A;
 - the nonzero entries of D are the singular values of A.

Existence proof

- First, note that both $\mathbf{A}^T \mathbf{A}$ and $\mathbf{A} \mathbf{A}^T$ are symmetric.
- Therefore, we can write:

•
$$\mathbf{A}^T \mathbf{A} = P_1 \Lambda_1 P_1^T$$

•
$$\mathbf{A}\mathbf{A}^T = P_2\Lambda_2P_2^T$$
.

- Moreover, note that A^TA and AA^T have the same nonzero eigenvalues.
- Therefore, if we choose Λ_1 and Λ_2 so that the elements on the diagonal are in descending order, we can choose
 - $U = P_2;$
 - $V = P_1;$
 - The main diagonal of D contains the nonzero eigenvalues of A^TA in descending order.

```
set.seed(1234)
A <- matrix(rnorm(3 * 2), ncol = 2, nrow = 3)
result <- svd(A)
names(result)</pre>
```

[1] "d" "u" "v"

result\$d

[1] 2.8602018 0.6868562

Example ii

result\$u

##		[,1]	[,2]
##	[1,]	-0.9182754	-0.359733536
##	[2,]	0.1786546	-0.003617426
##	[3,]	0.3533453	-0.933048068

result\$v

[,1] [,2]
[1,] 0.5388308 -0.8424140
[2,] 0.8424140 0.5388308

D <- diag(result\$d) all.equal(A, result\$u %*% D %*% t(result\$v)) #CHECK</pre>

[1] TRUE

Example iv

Note: crossprod(A) == t(A) %*% A

- # tcrossprod(A) == A %*% t(A)
- U <- eigen(tcrossprod(A))\$vectors</pre>
- V <- eigen(crossprod(A))\$vectors</pre>

```
D <- matrix(0, nrow = 3, ncol = 2)
diag(D) <- result$d</pre>
```

all.equal(A, U %*% D %*% t(V)) # CHECK

[1] "Mean relative difference: 1.95887"

What went wrong?
Recall that eigenvectors are unique
only up to a sign!

These elements should all be positive
diag(t(U) %*% A %*% V)

[1] -2.8602018 0.6868562

Therefore we need to multiply the # corresponding columns of U or V # (but not both!) by -1 cols_flip <- which(diag(t(U) %*% A %*% V) < 0) V[,cols_flip] <- -V[,cols_flip]</pre>

all.equal(A, U %*% D %*% t(V)) # CHECK

[1] TRUE