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Basic Matrix operations
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Matrix algebra and R

• Matrix operations in R are very fast.
• This includes various class of operations:

• Matrix addition, scalar multiplication, matrix
multiplication, matrix-vector multiplication

• Standard functions like determinant, rank, condition
number, etc.

• Matrix decompositions, e.g. eigenvalue, singular value,
Cholesky, QR, etc.

• Support for sparse matrices, i.e. matrices where a
significant number of entries are exactly zero.
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Matrix functions i

A <- matrix(c(1, 2, 3, 4), nrow = 2, ncol = 2)
A

## [,1] [,2]
## [1,] 1 3
## [2,] 2 4

# Determinant
det(A)

## [1] -2
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Matrix functions ii

# Rank
library(Matrix)
rankMatrix(A)

## [1] 2
## attr(,"method")
## [1] "tolNorm2"
## attr(,"useGrad")
## [1] FALSE
## attr(,"tol")
## [1] 4.440892e-16
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Matrix functions iii

# Condition number
kappa(A)

## [1] 18.77778

# How to compute the trace?
sum(diag(A))

## [1] 5

6



Matrix functions iv

# Transpose
t(A)

## [,1] [,2]
## [1,] 1 2
## [2,] 3 4

# Inverse
solve(A)
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Matrix functions v

## [,1] [,2]
## [1,] -2 1.5
## [2,] 1 -0.5

A %*% solve(A) # CHECK

## [,1] [,2]
## [1,] 1 0
## [2,] 0 1
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Matrix operations i

A <- matrix(c(1, 2, 3, 4), nrow = 2, ncol = 2)
B <- matrix(c(4, 3, 2, 1), nrow = 2, ncol = 2)

# Addition
A + B

## [,1] [,2]
## [1,] 5 5
## [2,] 5 5
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Matrix operations ii

# Scalar multiplication
3*A

## [,1] [,2]
## [1,] 3 9
## [2,] 6 12

# Matrix multiplication
A %*% B
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Matrix operations iii

## [,1] [,2]
## [1,] 13 5
## [2,] 20 8

# Hadamard product aka entrywise multiplication
A * B

## [,1] [,2]
## [1,] 4 6
## [2,] 6 4
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Matrix operations iv

# Matrix-vector product
vect <- c(1, 2)
A %*% vect

## [,1]
## [1,] 7
## [2,] 10

# BE CAREFUL: R recycles vectors
A * vect
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Matrix operations v

## [,1] [,2]
## [1,] 1 3
## [2,] 4 8
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Eigenvalues and Eigenvectors
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Eigenvalues

• Let A be a square n × n matrix.
• The equation

det(A − λIn) = 0

is called the characteristic equation of A.
• This is a polynomial equation of degree n, and its roots

are called the eigenvalues of A.
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Example

Let

A =

 1 0.5
0.5 1

 .

Then we have

det(A − λI2) = (1 − λ)2 − 0.25
= (λ − 1.5)(λ − 0.5)

Therefore, A has two (real) eigenvalues, namely

λ1 = 1.5, λ2 = 0.5.

16



A few properties

Let λ1, . . . , λn be the eigenvalues of A (with multiplicities).

1. tr(A) = ∑n
i=1 λi;

2. det(A) = ∏n
i=1 λi;

3. The eigenvalues of Ak are λk
1, . . . , λk

n, for k a
nonnegative integer;

4. If A is invertible, then the eigenvalues of A−1 are
λ−1

1 , . . . , λ−1
n .
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Eigenvectors

• If λ is an eigenvalues of A, then (by definition) we have
det(A − λIn) = 0.

• In other words, the following equivalent statements hold:
• The matrix A − λIn is singular;
• The kernel space of A − λIn is nontrivial (i.e. not equal

to the zero vector);
• The system of equations (A − λIn)v = 0 has a

nontrivial solution;
• There exists a nonzero vector v such that

Av = λv.

• Such a vector is called an eigenvector of A.
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Example (cont’d) i

Recall that we had

A =

 1 0.5
0.5 1

 ,

and we determined that 0.5 was an eigenvalue of A.

We therefore have

A − 0.5I2 =

0.5 0.5
0.5 0.5

 .
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Example (cont’d) ii

As we can see, any vector v of the form (x, −x) satisfies

(A − 0.5I2)v = (0, 0).

In other words, we not only get a single eigenvector, but a
whole subspace of R2. By convention, we usually select as a
represensative a vector of norm 1, e.g.

v =
(

1√
2

,
−1√

2

)
.
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Example (cont’d) iii

Alternatively, instead of finding the eigenvector by inspection,
we can use the reduced row-echelon form of A − 0.5I2, which
is given by

A =

1 1
0 0

 .

Therefore, the solutions to (A − 0.5I2)v, with v = (x, y) are
given by a single equation, namely y + x = 0, or y = −x.
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Eigenvalues and eigenvectors in R i

A <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)

result <- eigen(A)

names(result)

## [1] "values" "vectors"

result$values

## [1] 1.5 0.5
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Eigenvalues and eigenvectors in R ii

result$vectors

## [,1] [,2]
## [1,] 0.7071068 -0.7071068
## [2,] 0.7071068 0.7071068

1/sqrt(2)

## [1] 0.7071068
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Symmetric matrices i

• A matrix A is called symmetric if AT = A.
• Proposition 1: If A is (real) symmetric, then its

eigenvalues are real.

Proof : Let λ be an eigenvalue of A, and let v ̸= 0 be an
eigenvector corresponding to this eigenvalue. Then we have
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Symmetric matrices ii

λv̄T v = v̄T (λv)
= v̄T (Av)
= (AT v̄)T v

= (Av̄)T v (A is symmetric)
= (Av)T v (A is real)
= λ̄v̄T v.

Since we have v ̸= 0, we conclude that λ = λ̄, i.e. λ is real.
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Symmetric matrices iii

• Proposition 2: If A is (real) symmetric, then
eigenvectors corresponding to distinct eigenvalues are
orthogonal.

Proof : Let λ1, λ2 be distinct eigenvalues, and let
v1 ̸= 0, v2 ̸= 0 be corresponding eigenvectors. Then we have
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Symmetric matrices iv

λ1v
T
1 v2 = (Av1)T v2

= vT
1 AT v2

= vT
1 Av2 (A is symmetric)

= vT
1 (λ2v2)

= λ2v
T
1 v2.

Since λ1 ̸= λ2, we conclude that vT
1 v2 = 0, i.e. v1 and v2 are

orthogonal.
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Spectral Decomposition i

• Putting these two propositions together, we get the
Spectral Decomposition for symmetric matrices.

• Theorem: Let A be an n × n symmetric matrix, and let
λ1 ≥ · · · ≥ λn be its eigenvalues (with multiplicity).
Then there exist vectors v1, . . . , vn such that

1. Avi = λivi, i.e. vi is an eigenvector, for all i;
2. If i ̸= j, then vT

i vj = 0, i.e. they are orthogonal;
3. For all i, we have vT

i vi = 1, i.e. they have unit norm;
4. We can write A =

∑n
i=1 λiviv

T
i .

Sketch of a proof :
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Spectral Decomposition ii

1. We are saying that we can find n eigenvectors. This
means that if an eigenvalue λ has multiplicity m (as a
root of the characteristic polynomial), then the dimension
of its eigenspace (i.e. the subspace of vectors satisfying
Av = λv) is also equal to m. This is not necessarily the
case for a general matrix A.

2. If λi ̸= λj, this is simply a consequence of Proposition 2.
Otherwise, find a basis of the eigenspace and turn it into
an orthogonal basis using the Gram-Schmidt algorithm.

3. This is one is straightforward: we are simply saying that
we can choose the vectors so that they have unit norm.

29



Spectral Decomposition iii

4. First, note that if Λ is a diagonal matrix with λ1, . . . , λn

on the diagonal, and P is a matrix whose i-th column is
vi, then A = ∑n

i=1 λiviv
T
i is equivalent to

A = PΛP T .

Then 4. is a consequence of the change of basis theorem:
if we change the basis from the standard one to
{v1, . . . , vn}, then A acts by scalar multiplication in each
direction, i.e. it is represented by a diagonal matrix Λ.
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Examples i

We looked at

A =

 1 0.5
0.5 1

 ,

and determined that the eigenvalues where 1.5, 0.5, with
corresponding eigenvectors

(
1/

√
2, 1/

√
2
)

and(
1/

√
2, −1/

√
2
)
.

31



Examples ii

v1 <- c(1/sqrt(2), 1/sqrt(2))
v2 <- c(1/sqrt(2), -1/sqrt(2))

Lambda <- diag(c(1.5, 0.5))
P <- cbind(v1, v2)

P %*% Lambda %*% t(P)

## [,1] [,2]
## [1,] 1.0 0.5
## [2,] 0.5 1.0
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Examples iii

# Now let's look at a random matrix----
A <- matrix(rnorm(3 * 3), ncol = 3, nrow = 3)
# Let's make it symmetric
A[lower.tri(A)] <- A[upper.tri(A)]
A

## [,1] [,2] [,3]
## [1,] -0.2550974 -0.5047826 0.2166169
## [2,] -0.5047826 -0.2792298 0.0953815
## [3,] 0.2166169 0.0953815 -0.5734243
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Examples iv

result <- eigen(A, symmetric = TRUE)
Lambda <- diag(result$values)
P <- result$vectors

P %*% Lambda %*% t(P)

## [,1] [,2] [,3]
## [1,] -0.2550974 -0.5047826 0.2166169
## [2,] -0.5047826 -0.2792298 0.0953815
## [3,] 0.2166169 0.0953815 -0.5734243
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Examples v

# How to check if they are equal?
all.equal(A, P %*% Lambda %*% t(P))

## [1] TRUE
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Positive-definite matrices

Let A be a real symmetric matrix, and let λ1 ≥ · · · ≥ λn be
its (real) eigenvalues.

1. If λi > 0 for all i, we say A is positive definite.
2. If the inequality is not strict, if λi ≥ 0, we say A is

positive semidefinite.
3. Similary, if λi < 0 for all i, we say A is negative definite.
4. If the inequality is not strict, if λi ≤ 0, we say A is

negative semidefinite.

Note: If A is positive-definite, then it is invertible!
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Matrix Square Root i

• Let A be a positive semidefinite symmetric matrix.
• By the Spectral Decomposition, we can write

A = PΛP T .

• Since A is positive-definite, we know that the elements
on the diagonal of Λ are positive.

• Let Λ1/2 be the diagonal matrix whose entries are the
square root of the entries on the diagonal of Λ.

• For example:

Λ =

1.5 0
0 0.5

 ⇒ Λ1/2 =

1.2247 0
0 0.7071

 .
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Matrix Square Root ii
• We define the square root A1/2 of A as follows:

A1/2 := PΛ1/2P T .

• Check:

A1/2A1/2 = (PΛ1/2P T )(PΛ1/2P T )
= PΛ1/2(P T P )Λ1/2P T

= PΛ1/2Λ1/2P T (P is orthogonal)
= PΛP T

= A.
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Matrix Square Root iii

• Be careful: your intuition about square roots of positive
real numbers doesn’t translate to matrices.

• In particular, matrix square roots are not unique (unless
you impose further restrictions).
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Cholesky Decomposition

• The most common way to obtain a square root matrix for
a positive definite matrix A is via the Cholesky
decomposition.

• There exists a unique matrix L such that:
• L is lower triangular (i.e. all entries above the diagonal

are zero);
• The entries on the diagonal are positive;
• A = LLT .

• For matrix square roots, the Cholesky decomposition
should be prefered to the eigenvalue decomposition
because:

• It is computationally more efficient;
• It is numerically more stable.
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Example i

A <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)

# Eigenvalue method
result <- eigen(A)
Lambda <- diag(result$values)
P <- result$vectors
A_sqrt <- P %*% Lambda^0.5 %*% t(P)

all.equal(A, A_sqrt %*% A_sqrt) # CHECK

## [1] TRUE
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Example ii

# Cholesky method
# It's upper triangular!
(L <- chol(A))

## [,1] [,2]
## [1,] 1 0.5000000
## [2,] 0 0.8660254

all.equal(A, t(L) %*% L) # CHECK

## [1] TRUE
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Power method
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Introduction to numerical algebra

• As presented in these notes, we can find the eigenvalue
decomposition by

1. Finding the roots of a degree n polynomial.
2. For each root, find the solutions to a system of linear

equations.
• Problem: no exact formula for roots of a generic

polynomial when n > 4.
• So we need to find approximate solutions

• Other problem: approximation errors for eigenvalues
propagate to eigenvectors

• Need more stable algorithms
• This is what numerical algebra is about. For a good

reference, I recommend Matrix Computations by Golub
and Van Loan. 44



Power Method i

• We’ll discuss one approach to finding the leading
eigenvector, i.e. the eigenvector corresponding to the
largest eigenvalue (in absolute value).

• Note: We have to assume that the largest eigenvalue (in
absolute value) is unique.

• Algorithm:
1. Let v0 be an initial vector with unit norm.
2. At step k, define

vk+1 = Avk

∥Avk∥
,

where ∥v∥ is the norm of the vector v.
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Power Method ii

3. Then the sequence vk converges to the desired
eigenvector.

4. The corresponding eigenvalue is defined by

λ = lim
k→∞

vT
k Avk

vT
k vk

.

• Comment: unless v0 is orthogonal to the eigenvector we
are looking for, we have theoretical guarantees of
convergence.

• In practice, we can pick v0 randomly, since the
probability a random vector is orthogonal to the
eigenvector is zero.
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Example i

set.seed(123)

A <- matrix(rnorm(3*3), ncol = 3)
# Make A symmetric
A[lower.tri(A)] <- A[upper.tri(A)]

# Set initial value
v_current <- rnorm(3)
v_current <- v_current/norm(v_current, type = "2")
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Example ii

# We'll perform 100 iterations
for (i in seq_len(100)) {
# Save result from previous iteration
v_previous <- v_current
# Compute matrix product
numerator <- A %*% v_current
# Normalize
v_current <- numerator/norm(numerator, type = "2")

}

v_current
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Example iii

## [,1]
## [1,] -0.3318109
## [2,] 0.5345952
## [3,] 0.7772448

# Corresponding eigenvalue
num <- t(v_current) %*% A %*% v_current
denom <- t(v_current) %*% v_current
num/denom

## [,1]
## [1,] -1.75374
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Example iv

# CHECK results
result <- eigen(A, symmetric = TRUE)
result$values[which.max(abs(result$values))]

## [1] -1.75374

result$vectors[,which.max(abs(result$values))]

## [1] 0.3318109 -0.5345952 -0.7772448

• Note that we did not get the same eigenvector: they
differ by -1.
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Visualization

−1.0 −0.5 0.0 0.5 1.0

−
1.
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−
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0
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5

1.
0

Blue is the objective; the sequence goes from green to red.
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Singular Value Decomposition
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Singular Value Decomposition i

• We saw earlier that real symmetric matrices are
diagonalizable, i.e. they admit a decomposition of the
form PΛP T where

• Λ is diagonal;
• P is orthogonal, i.e. PP T = P T P = I.

• For a general n × p matrix A, we have the Singular Value
Decomposition (SVD).

• We can write A = UDV T , where
• U is an n × n orthonal matrix;
• V is a p × p orthogonal matrix;
• D is an n × p diagonal matrix.
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Singular Value Decomposition ii

• We say that:
• the columns of U are the left-singular vectors of A;
• the columns of V are the right-singular vectors of A;
• the nonzero entries of D are the singular values of A.
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Existence proof

• First, note that both AT A and AAT are symmetric.
• Therefore, we can write:

• AT A = P1Λ1P T
1 ;

• AAT = P2Λ2P T
2 .

• Moreover, note that AT A and AAT have the same
nonzero eigenvalues.

• Therefore, if we choose Λ1 and Λ2 so that the elements
on the diagonal are in descending order, we can choose

• U = P2;
• V = P1;
• The main diagonal of D contains the nonzero

eigenvalues of AT A in descending order.
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Example i

set.seed(1234)
A <- matrix(rnorm(3 * 2), ncol = 2, nrow = 3)
result <- svd(A)
names(result)

## [1] "d" "u" "v"

result$d

## [1] 2.8602018 0.6868562
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Example ii

result$u

## [,1] [,2]
## [1,] -0.9182754 -0.359733536
## [2,] 0.1786546 -0.003617426
## [3,] 0.3533453 -0.933048068

result$v

## [,1] [,2]
## [1,] 0.5388308 -0.8424140
## [2,] 0.8424140 0.5388308
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Example iii

D <- diag(result$d)
all.equal(A, result$u %*% D %*% t(result$v)) #CHECK

## [1] TRUE
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Example iv

# Note: crossprod(A) == t(A) %*% A
# tcrossprod(A) == A %*% t(A)
U <- eigen(tcrossprod(A))$vectors
V <- eigen(crossprod(A))$vectors

D <- matrix(0, nrow = 3, ncol = 2)
diag(D) <- result$d

all.equal(A, U %*% D %*% t(V)) # CHECK

## [1] "Mean relative difference: 1.95887"
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Example v

# What went wrong?
# Recall that eigenvectors are unique
# only up to a sign!

# These elements should all be positive
diag(t(U) %*% A %*% V)

## [1] -2.8602018 0.6868562
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Example vi

# Therefore we need to multiply the
# corresponding columns of U or V
# (but not both!) by -1
cols_flip <- which(diag(t(U) %*% A %*% V) < 0)
V[,cols_flip] <- -V[,cols_flip]

all.equal(A, U %*% D %*% t(V)) # CHECK

## [1] TRUE
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