# Review of Linear Algebra 

Max Turgeon

STAT 4690-Applied Multivariate Analysis

## Basic Matrix operations

## Matrix algebra and R

- Matrix operations in R are very fast.
- This includes various class of operations:
- Matrix addition, scalar multiplication, matrix multiplication, matrix-vector multiplication
- Standard functions like determinant, rank, condition number, etc.
- Matrix decompositions, e.g. eigenvalue, singular value, Cholesky, QR, etc.
- Support for sparse matrices, i.e. matrices where a significant number of entries are exactly zero.


## Matrix functions i

A <- matrix $(c(1,2,3,4)$, nrow $=2$, ncol $=2$ )
A
\#\# [,1] [, 2]
\#\# [1,] 1 3
\#\# [2,] 24
\# Determinant
$\operatorname{det}(\mathrm{A})$
\#\# [1] -2

## Matrix functions if

\# Ranklibrary(Matrix)rankMatrix(A)
\#\# [1] 2\#\# attr(,"method")\#\# [1] "tolNorm2"\#\# attr(,"useGrad")\#\# [1] FALSE\#\# attr(,"tol")\#\# [1] 4.440892e-16

## Matrix functions iif

\# Condition number<br>kappa(A)

\#\# [1] 18.77778
\# How to compute the trace? sum(diag (A))
\#\# [1] 5

## Matrix functions iv

```
# Transpose
t(A)
## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
# Inverse
solve(A)
```


## Matrix functions

```
\#\#
\[
[, 1][, 2]
\]
\[
\text { \#\# [1,] } \quad-2 \quad 1.5
\]
\[
\text { \#\# [2,] } 1-0.5
\]
```

A \%*\% solve(A) \# CHECK

| \#\# | $[, 1]$ | $[, 2]$ |
| :--- | ---: | ---: |
| \#\# [1,] | 1 | 0 |
| \#\# [2,] | 0 | 1 |

## Matrix operations

$$
\begin{aligned}
& \mathrm{A}<-\operatorname{matrix}(\mathrm{c}(1,2,3,4), \text { nrow }=2, \text { ncol }=2) \\
& \mathrm{B}<-\operatorname{matrix}(\mathrm{c}(4,3,2,1), \text { nrow }=2, \text { ncol }=2)
\end{aligned}
$$

\# Addition
A $+B$
\#\# [,1] [,2]
\#\# [1,] 5
\#\# [2,] 5 5

## Matrix operations if

> \# Scalar multiplication $3 * \mathrm{~A}$
\#\# [,1] [,2]
\#\# [1,] 3
\#\# [2,] 6
\# Matrix multiplication
A \% * \% B

## Matrix operations iif

```
## [,1] [,2]
## [1,] 13 5
## [2,] 20 8
```

\# Hadamard product aka entrywise multiplication
A * B
\#\# [,1] [,2]
\#\# [1,] 46
\#\# [2,] 64

## Matrix operations iv

```
# Matrix-vector product
vect <- c(1, 2)
A %*% vect
## [,1]
## [1,] 7
## [2,] 10
# BE CAREFUL: R recycles vectors
A * vect
```


## Matrix operations

$\begin{array}{lrr}\text { \#\# } & {[, 1]} & {[, 2]} \\ \text { \#\# [1,] } & 1 & 3 \\ \text { \#\# [2,] } & 4 & 8\end{array}$

## Eigenvalues and Eigenvectors

## Eigenvalues

- Let $\mathbf{A}$ be a square $n \times n$ matrix.
- The equation

$$
\operatorname{det}\left(\mathbf{A}-\lambda I_{n}\right)=0
$$

is called the characteristic equation of $\mathbf{A}$.

- This is a polynomial equation of degree $n$, and its roots are called the eigenvalues of $\mathbf{A}$.


## Example

Let

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right)
$$

Then we have

$$
\begin{aligned}
\operatorname{det}\left(\mathbf{A}-\lambda I_{2}\right) & =(1-\lambda)^{2}-0.25 \\
& =(\lambda-1.5)(\lambda-0.5)
\end{aligned}
$$

Therefore, A has two (real) eigenvalues, namely

$$
\lambda_{1}=1.5, \lambda_{2}=0.5
$$

## A few properties

Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of $\mathbf{A}$ (with multiplicities).

1. $\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} \lambda_{i}$;
2. $\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \lambda_{i}$;
3. The eigenvalues of $\mathbf{A}^{k}$ are $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}$, for $k$ a nonnegative integer;
4. If $\mathbf{A}$ is invertible, then the eigenvalues of $\mathbf{A}^{-1}$ are $\lambda_{1}^{-1}, \ldots, \lambda_{n}^{-1}$.

## Eigenvectors

- If $\lambda$ is an eigenvalues of $\mathbf{A}$, then (by definition) we have $\operatorname{det}\left(\mathbf{A}-\lambda I_{n}\right)=0$.
- In other words, the following equivalent statements hold:
- The matrix $\mathbf{A}-\lambda I_{n}$ is singular;
- The kernel space of $\mathbf{A}-\lambda I_{n}$ is nontrivial (i.e. not equal to the zero vector);
- The system of equations $\left(\mathbf{A}-\lambda I_{n}\right) v=0$ has a nontrivial solution;
- There exists a nonzero vector $v$ such that

$$
\mathbf{A} v=\lambda v
$$

- Such a vector is called an eigenvector of $\mathbf{A}$.


## Example (cont'd)

Recall that we had

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right)
$$

and we determined that 0.5 was an eigenvalue of $\mathbf{A}$.
We therefore have

$$
\mathbf{A}-0.5 I_{2}=\left(\begin{array}{ll}
0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right)
$$

## Example (cont'd)

As we can see, any vector $v$ of the form $(x,-x)$ satisfies

$$
\left(\mathbf{A}-0.5 I_{2}\right) v=(0,0)
$$

In other words, we not only get a single eigenvector, but a whole subspace of $\mathbb{R}^{2}$. By convention, we usually select as a represensative a vector of norm 1, e.g.

$$
v=\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)
$$

## Example (cont'd) iif

Alternatively, instead of finding the eigenvector by inspection, we can use the reduced row-echelon form of $\mathbf{A}-0.5 I_{2}$, which is given by

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

Therefore, the solutions to $\left(\mathbf{A}-0.5 I_{2}\right) v$, with $v=(x, y)$ are given by a single equation, namely $y+x=0$, or $y=-x$.

## Eigenvalues and eigenvectors in R

A <- matrix $(c(1,0.5,0.5,1)$, nrow $=2)$
result <- eigen(A)
names (result)
\#\# [1] "values" "vectors"
result\$values
\#\# [1] 1.50 .5

## Eigenvalues and eigenvectors in R if

result\$vectors
\#\#
[,1]
[,2]
\#\# [1,] 0.7071068 -0.7071068
\#\# [2,] 0.70710680 .7071068

1/sqrt(2)
\#\# [1] 0.7071068

## Symmetric matrices i

- A matrix $\mathbf{A}$ is called symmetric if $\mathbf{A}^{T}=\mathbf{A}$.
- Proposition 1: If $\mathbf{A}$ is (real) symmetric, then its eigenvalues are real.

Proof: Let $\lambda$ be an eigenvalue of $\mathbf{A}$, and let $v \neq 0$ be an eigenvector corresponding to this eigenvalue. Then we have

## Symmetric matrices ii

$$
\begin{array}{rlr}
\lambda \bar{v}^{T} v & =\bar{v}^{T}(\lambda v) \\
& =\bar{v}^{T}(\mathbf{A} v) \\
& =\left(\mathbf{A}^{T} \bar{v}\right)^{T} v & \\
& =(\mathbf{A} \bar{v})^{T} v & (\mathbf{A} \text { is symmetric }) \\
& =(\overline{\mathbf{A} v})^{T} v & \text { (A is real) } \\
& =\bar{\lambda} \bar{v}^{T} v . &
\end{array}
$$

Since we have $v \neq 0$, we conclude that $\lambda=\bar{\lambda}$, i.e. $\lambda$ is real.

## Symmetric matrices iii

- Proposition 2: If $\mathbf{A}$ is (real) symmetric, then eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof: Let $\lambda_{1}, \lambda_{2}$ be distinct eigenvalues, and let
$v_{1} \neq 0, v_{2} \neq 0$ be corresponding eigenvectors. Then we have

## Symmetric matrices iv

$$
\begin{aligned}
\lambda_{1} v_{1}^{T} v_{2} & =\left(\mathbf{A} v_{1}\right)^{T} v_{2} \\
& =v_{1}^{T} \mathbf{A}^{T} v_{2} \\
& =v_{1}^{T} \mathbf{A} v_{2} \quad(\mathbf{A} \text { is symmetric }) \\
& =v_{1}^{T}\left(\lambda_{2} v_{2}\right) \\
& =\lambda_{2} v_{1}^{T} v_{2}
\end{aligned}
$$

Since $\lambda_{1} \neq \lambda_{2}$, we conclude that $v_{1}^{T} v_{2}=0$, i.e. $v_{1}$ and $v_{2}$ are orthogonal.

## Spectral Decomposition

- Putting these two propositions together, we get the Spectral Decomposition for symmetric matrices.
- Theorem: Let $\mathbf{A}$ be an $n \times n$ symmetric matrix, and let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be its eigenvalues (with multiplicity).
Then there exist vectors $v_{1}, \ldots, v_{n}$ such that

1. $\mathbf{A} v_{i}=\lambda_{i} v_{i}$, i.e. $v_{i}$ is an eigenvector, for all $i$;
2. If $i \neq j$, then $v_{i}^{T} v_{j}=0$, i.e. they are orthogonal;
3. For all $i$, we have $v_{i}^{T} v_{i}=1$, i.e. they have unit norm;
4. We can write $\mathbf{A}=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T}$.

Sketch of a proof:

## Spectral Decomposition if

1. We are saying that we can find $n$ eigenvectors. This means that if an eigenvalue $\lambda$ has multiplicity $m$ (as a root of the characteristic polynomial), then the dimension of its eigenspace (i.e. the subspace of vectors satisfying $\mathbf{A} v=\lambda v$ ) is also equal to $m$. This is not necessarily the case for a general matrix $\mathbf{A}$.
2. If $\lambda_{i} \neq \lambda_{j}$, this is simply a consequence of Proposition 2. Otherwise, find a basis of the eigenspace and turn it into an orthogonal basis using the Gram-Schmidt algorithm.
3. This is one is straightforward: we are simply saying that we can choose the vectors so that they have unit norm.

## Spectral Decomposition iii

4. First, note that if $\Lambda$ is a diagonal matrix with $\lambda_{1}, \ldots, \lambda_{n}$ on the diagonal, and $P$ is a matrix whose $i$-th column is $v_{i}$, then $\mathbf{A}=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T}$ is equivalent to

$$
\mathbf{A}=P \Lambda P^{T}
$$

Then 4. is a consequence of the change of basis theorem: if we change the basis from the standard one to $\left\{v_{1}, \ldots, v_{n}\right\}$, then $\mathbf{A}$ acts by scalar multiplication in each direction, i.e. it is represented by a diagonal matrix $\Lambda$.

## Examples

We looked at

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right)
$$

and determined that the eigenvalues where $1.5,0.5$, with corresponding eigenvectors $(1 / \sqrt{2}, 1 / \sqrt{2})$ and $(1 / \sqrt{2},-1 / \sqrt{2})$.

## Examples if

$$
\begin{aligned}
& \text { v1 <- c(1/sqrt(2), 1/sqrt(2)) } \\
& \text { v2 <- c(1/sqrt(2), -1/sqrt(2)) }
\end{aligned}
$$

Lambda <- diag(c(1.5, 0.5))
P <- cbind(v1, v2)

P \%*\% Lambda \%*\% t (P)

| \#\# | $[, 1]$ | $[, 2]$ |
| :--- | ---: | ---: |
| \#\# [1,] | 1.0 | 0.5 |
| \#\# [2,] | 0.5 | 1.0 |

## Examples ifi

```
# Now let's look at a random matrix----
A <- matrix(rnorm(3 * 3), ncol = 3, nrow = 3)
# Let's make it symmetric
A[lower.tri(A)] <- A[upper.tri(A)]
A
\begin{tabular}{lrrr} 
\#\# & {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
\#\# & {\([1]\),} & -0.2550974 & -0.5047826 \\
\#\# [2,] & -0.5047826 & -0.2792298 & 0.0953815 \\
\#\# [3,] & 0.2166169 & 0.0953815 & -0.5734243
\end{tabular}
```


## Examples iv

result <- eigen(A, symmetric = TRUE)
Lambda <- diag(result\$values)
P <- result\$vectors
P \%*\% Lambda \%*\% t (P)
\#\#
[,1] [,2]
[,3]
\#\# [1,] -0.2550974 -0.5047826 0.2166169
\#\# [2,] -0.5047826-0.2792298 0.0953815
\#\# [3,] $0.2166169 \quad 0.0953815-0.5734243$

## Examples

\# How to check if they are equal?
all.equal (A, P \%*\% Lambda \% $\% \%$ t(P))
\#\# [1] TRUE

## Positive-definite matrices

Let $\mathbf{A}$ be a real symmetric matrix, and let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be its (real) eigenvalues.

1. If $\lambda_{i}>0$ for all $i$, we say $\mathbf{A}$ is positive definite.
2. If the inequality is not strict, if $\lambda_{i} \geq 0$, we say $\mathbf{A}$ is positive semidefinite.
3. Similary, if $\lambda_{i}<0$ for all $i$, we say $\mathbf{A}$ is negative definite.
4. If the inequality is not strict, if $\lambda_{i} \leq 0$, we say $\mathbf{A}$ is negative semidefinite.

Note: If $\mathbf{A}$ is positive-definite, then it is invertible!

## Matrix Square Root

- Let $\mathbf{A}$ be a positive semidefinite symmetric matrix.
- By the Spectral Decomposition, we can write

$$
\mathbf{A}=P \Lambda P^{T}
$$

- Since $\mathbf{A}$ is positive-definite, we know that the elements on the diagonal of $\Lambda$ are positive.
- Let $\Lambda^{1 / 2}$ be the diagonal matrix whose entries are the square root of the entries on the diagonal of $\Lambda$.
- For example:

$$
\Lambda=\left(\begin{array}{cc}
1.5 & 0 \\
0 & 0.5
\end{array}\right) \Rightarrow \Lambda^{1 / 2}=\left(\begin{array}{cc}
1.2247 & 0 \\
0 & 0.7071
\end{array}\right)
$$

## Matrix Square Root if

- We define the square root $\mathbf{A}^{1 / 2}$ of $\mathbf{A}$ as follows:

$$
\mathbf{A}^{1 / 2}:=P \Lambda^{1 / 2} P^{T}
$$

- Check:

$$
\begin{aligned}
\mathbf{A}^{1 / 2} \mathbf{A}^{1 / 2} & =\left(P \Lambda^{1 / 2} P^{T}\right)\left(P \Lambda^{1 / 2} P^{T}\right) \\
& =P \Lambda^{1 / 2}\left(P^{T} P\right) \Lambda^{1 / 2} P^{T} \\
& =P \Lambda^{1 / 2} \Lambda^{1 / 2} P^{T} \quad(P \text { is orthogonal }) \\
& =P \Lambda P^{T} \\
& =\mathbf{A}
\end{aligned}
$$

## Matrix Square Root iii

- Be careful: your intuition about square roots of positive real numbers doesn't translate to matrices.
- In particular, matrix square roots are not unique (unless you impose further restrictions).


## Cholesky Decomposition

- The most common way to obtain a square root matrix for a positive definite matrix $\mathbf{A}$ is via the Cholesky decomposition.
- There exists a unique matrix $L$ such that:
- $L$ is lower triangular (i.e. all entries above the diagonal are zero);
- The entries on the diagonal are positive;
- $\mathbf{A}=L L^{T}$.
- For matrix square roots, the Cholesky decomposition should be prefered to the eigenvalue decomposition because:
- It is computationally more efficient;
- It is numerically more stable.


## Example i

A <- matrix $(c(1,0.5,0.5,1)$, nrow $=2)$
\# Eigenvalue method
result <- eigen(A)
Lambda <- diag(result\$values)
P <- result\$vectors
A_sqrt <- P \%*\% Lambda~0. $5 \%$ \% $\%$ t (P)
all.equal(A, A_sqrt $\% * \%$ A_sqrt) \# CHECK
\#\# [1] TRUE

## Example if

\# Cholesky method
\# It's upper triangular!
(L <- chol(A))

| \#\# | $[, 1]$ | $[, 2]$ |
| :--- | ---: | ---: |
| \#\# | $[1]$, | 1 |
| \#\# | 0.5000000 |  |
| [2,] | 0 | 0.8660254 |

all.equal (A, t(L) \%*\% L) \# CHECK
\#\# [1] TRUE

## Power method

## Introduction to numerical algebra

- As presented in these notes, we can find the eigenvalue decomposition by

1. Finding the roots of a degree $n$ polynomial.
2. For each root, find the solutions to a system of linear equations.

- Problem: no exact formula for roots of a generic polynomial when $n>4$.
- So we need to find approximate solutions
- Other problem: approximation errors for eigenvalues propagate to eigenvectors
- Need more stable algorithms
- This is what numerical algebra is about. For a good reference, I recommend Matrix Computations by Golub and Van Loan.


## Power Method i

- We'll discuss one approach to finding the leading eigenvector, i.e. the eigenvector corresponding to the largest eigenvalue (in absolute value).
- Note: We have to assume that the largest eigenvalue (in absolute value) is unique.
- Algorithm:

1. Let $v_{0}$ be an initial vector with unit norm.
2. At step $k$, define

$$
v_{k+1}=\frac{\mathbf{A} v_{k}}{\left\|\mathbf{A} v_{k}\right\|}
$$

where $\|v\|$ is the norm of the vector $v$.

## Power Method if

3. Then the sequence $v_{k}$ converges to the desired eigenvector.
4. The corresponding eigenvalue is defined by

$$
\lambda=\lim _{k \rightarrow \infty} \frac{v_{k}^{T} \mathbf{A} v_{k}}{v_{k}^{T} v_{k}} .
$$

- Comment: unless $v_{0}$ is orthogonal to the eigenvector we are looking for, we have theoretical guarantees of convergence.
- In practice, we can pick $v_{0}$ randomly, since the probability a random vector is orthogonal to the eigenvector is zero.


## Example i

set.seed(123)

A <- matrix(rnorm $(3 * 3)$, ncol $=3)$
\# Make A symmetric
A[lower.tri(A)] <- A[upper.tri(A)]
\# Set initial value
v_current <- rnorm(3)
v_current <- v_current/norm(v_current, type = "2")

## Example ii

```
# We'll perform 100 iterations
for (i in seq_len(100)) {
    # Save result from previous iteration
    v_previous <- v_current
    # Compute matrix product
    numerator <- A %*% v_current
    # Normalize
    v_current <- numerator/norm(numerator, type = "2")
}
```

v_current

## Example ifi

```
##
                                    [,1]
## [1,] -0.3318109
## [2,] 0.5345952
## [3,] 0.7772448
```

\# Corresponding eigenvalue
num <- t(v_current) $\% * \%$ A \% $\%$ \% v_current
denom <- t(v_current) \%*\% v_current
num/denom
\#\#
[,1]
\#\# [1,] -1.75374

## Example iv

\# CHECK results
result <- eigen(A, symmetric = TRUE)result\$values[which.max(abs(result\$values))]
\#\# [1] -1.75374
result\$vectors[,which.max(abs(result\$values))]
\#\# [1] 0.3318109 -0.5345952 -0.7772448

- Note that we did not get the same eigenvector: they differ by -1 .


## Visualization



Blue is the objective; the sequence goes from green to red.

## Singular Value Decomposition

## Singular Value Decomposition

- We saw earlier that real symmetric matrices are diagonalizable, i.e. they admit a decomposition of the form $P \Lambda P^{T}$ where
- $\Lambda$ is diagonal;
- $P$ is orthogonal, i.e. $P P^{T}=P^{T} P=I$.
- For a general $n \times p$ matrix A, we have the Singular Value Decomposition (SVD).
- We can write $\mathbf{A}=U D V^{T}$, where
- $U$ is an $n \times n$ orthonal matrix;
- $V$ is a $p \times p$ orthogonal matrix;
- $D$ is an $n \times p$ diagonal matrix.


## Singular Value Decomposition ii

- We say that:
- the columns of $U$ are the left-singular vectors of $\mathbf{A}$;
- the columns of $V$ are the right-singular vectors of $\mathbf{A}$;
- the nonzero entries of $D$ are the singular values of $\mathbf{A}$.


## Existence proof

- First, note that both $\mathbf{A}^{T} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{T}$ are symmetric.
- Therefore, we can write:
- $\mathbf{A}^{T} \mathbf{A}=P_{1} \Lambda_{1} P_{1}^{T}$;
- $\mathbf{A} \mathbf{A}^{T}=P_{2} \Lambda_{2} P_{2}^{T}$.
- Moreover, note that $\mathbf{A}^{T} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{T}$ have the same nonzero eigenvalues.
- Therefore, if we choose $\Lambda_{1}$ and $\Lambda_{2}$ so that the elements on the diagonal are in descending order, we can choose
- $U=P_{2}$;
- $V=P_{1}$;
- The main diagonal of $D$ contains the nonzero eigenvalues of $\mathbf{A}^{T} \mathbf{A}$ in descending order.


## Example i

set.seed(1234)
A <- matrix (rnorm(3 * 2), ncol = 2, nrow $=3$ )
result <- svd(A)
names (result)
\#\# [1] "d" "u" "v"
result\$d
\#\# [1] 2.86020180 .6868562

## Example if

## result\$u

| \#\# | $[, 1]$ | $[, 2]$ |
| :--- | ---: | ---: |
| \#\# $[1]$, | -0.9182754 | -0.359733536 |
| \#\# [2,] | 0.1786546 | -0.003617426 |
| \#\# $[3]$, | 0.3533453 | -0.933048068 |

result\$v
\#\# [,1]
[,2]
\#\# [1,] 0.5388308 -0.8424140
\#\# [2,] 0.84241400 .5388308

## Example iif

D <- diag(result\$d)
all.equal (A, result\$u \%*\% D \%*\% t(result\$v)) \#CHECK
\#\# [1] TRUE

## Example iv

$$
\begin{aligned}
& \text { \# Note: } \operatorname{crossprod}(A)==t(A) \% * \% A \\
& \# \text { tcrossprod(A) }==A \% * \% t(A) \\
& U \text { <- eigen(tcrossprod(A))\$vectors } \\
& V \text { <- eigen(crossprod(A))\$vectors } \\
& D<- \text { matrix(0, nrow }=3, \text { ncol }=2) \\
& \text { diag(D) <- result\$d }
\end{aligned}
$$

all. equal (A, U \%*\% D \%*\% t(V)) \# CHECK
\#\# [1] "Mean relative difference: 1.95887"

## Example v

\# What went wrong?
\# Recall that eigenvectors are unique \# only up to a sign!
\# These elements should all be positive diag(t(U) \%*\% A \%*\% V)
\#\# [1] -2.8602018 0.6868562

## Example vi

```
# Therefore we need to multiply the
# corresponding columns of U or V
# (but not both!) by -1
cols_flip <- which(diag(t(U) %*% A %*% V) < 0)
V[,cols_flip] <- -V[,cols_flip]
all.equal(A, U %*% D %*% t(V)) # CHECK
```

\#\# [1] TRUE

