Problem Set 1-STAT 7200

1. Let A be a $p \times q$ matrix, and let B be a $q \times p$ matrix.
(a) Prove that $\operatorname{det}(I+A B)=\operatorname{det}(I+B A)$.
(b) Prove that $A B$ and $B A$ have the same nonzero eigenvalues.
2. Let $\mathbf{x} \in \mathbb{R}^{p}$, and let A be a $p \times p$ symmetric matrix. Prove that

$$
\frac{\partial \mathbf{x}^{T} A \mathbf{x}}{\partial \mathbf{x}}=2 A \mathbf{x}
$$

3. Let (X, Y) be uniformly distributed on the unit disk $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$. Let $R=\sqrt{X^{2}+Y^{2}}$. Find the distribution and the density function of R.
4. Let $X, Y \sim U(0,1)$ be independent. Find the density functions of $U=X-Y$ and $V=X / Y$.
5. Find the characteristic function of the binomial, Poisson, and chi-square distributions.
6. Let $X_{1}, \ldots, X_{n} \sim \operatorname{Exp}(\beta)$. Find the characteristic function of X_{i}. Use the result to prove that $\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}(n, \beta)$.
7. Reduce the multivariate Central Limit Theorem to the univariate CLT, i.e. assuming the univariate result, prove the multivariate one.
8. Let $\left(X_{11}, X_{21}\right), \ldots,\left(X_{1 n}, X_{2 n}\right)$ be a random sample with mean $\mu=\left(\mu_{1}, \mu_{2}\right)$ and variance Σ. Let

$$
\bar{X}_{1}=\frac{1}{n} \sum_{i=1}^{n} X_{1 i}, \quad \bar{X}_{2}=\frac{1}{n} \sum_{i=1}^{n} X_{2 i} .
$$

Define $Y_{n}=\bar{X}_{1} / \bar{X}_{2}$. Find the limiting distribution of the sequence Y_{n}.

