Problem Set 2-STAT 7200

1. Prove the result on Slide 33 of the notes on the Multivariate Normal distribution.
2. Let $\mathbf{Y}=\left(Y_{1}, Y_{2}, Y_{3}\right)$ be a multivariate normal random vector with

$$
\mu=(3,0,6), \quad \Sigma=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 3 & 2 \\
1 & 2 & 2
\end{array}\right),
$$

and let $\mathbf{U}=\left(3 Y_{1}-2 Y_{2}+Y_{3}, Y_{2}-2 Y_{3}\right)$.
(a) Write $\mathbf{U}=\left(U_{1}, U_{2}\right)$ as $\mathbf{U}=A \mathbf{Y}$ for a suitable matrix A.
(b) Find the distribution of \mathbf{U}.
(c) Find a two-dimensional vector $\mathbf{w}=\left(w_{1}, w_{2}\right)$ such that

$$
Y_{2}, \quad Y_{2}-\mathbf{w}^{T}\binom{Y_{1}}{Y_{3}}
$$

are jointly independent.
(d) Find the conditional distribution of Y_{3} given $Y_{1}=3$ and $Y_{2}=1$.
3. Let Y_{1} be univariate standard normal $N(0,1)$, and let

$$
Y_{2}= \begin{cases}-Y_{1} & -1 \leq Y_{1} \leq 1, \\ Y_{1} & \text { otherwise } .\end{cases}
$$

Show that
(a) Y_{2} also follows a standard normal distribution;
(b) $\left(Y_{1}, Y_{2}\right)$ does not follow a bivariate normal distribution.
4. Let \mathbf{Y} be a random vector defined by

$$
\mathbf{Y}=X \beta+Z \mathbf{B}+\mathbf{E},
$$

where X is $p \times q, Z$ is $p \times r$, both are non-random; β is a q-dimensional parameter vector; and $\mathbf{B} \sim N_{r}(0, \Omega), \mathbf{E} \sim N_{p}\left(0, \sigma^{2} I_{p}\right)$, and both are independent. Show that
(a) $\mathbf{Y} \sim N_{p}(X \beta, \Sigma)$, where $\Sigma=Z \Omega Z^{T}+\sigma^{2} I_{p}$.
(b) $\binom{\mathbf{Y}}{\mathbf{B}} \sim N_{p+r}\left(\binom{X \beta}{0},\left(\begin{array}{cc}\Sigma & Z \Omega \\ \Omega Z^{T} & \Omega\end{array}\right)\right)$.
(c) $E(\mathbf{B} \mid \mathbf{Y})=\Omega Z \Sigma^{-1}(\mathbf{Y}-X \beta)$.
(d) $\mathbf{Y} \mid \mathbf{B} \sim N_{p}\left(X \beta+Z \mathbf{B}, \sigma^{2} I_{p}\right)$.
5. Let $\mathbf{Y} \sim N_{p}(\mu, \Sigma)$. Compute the characteristic function of $\mathbf{Y}^{T} A \mathbf{Y}$, where A is a nonrandom matrix.
6. Let \mathbf{Y} be such that $E(\mathbf{Y})=\mu$ and $\operatorname{Cov}(\mathbf{Y})=\Sigma$. Show that

$$
\min _{\mathbf{c}} E\left((\mathbf{Y}-\mathbf{c})^{T}(\mathbf{Y}-\mathbf{c})\right)=\operatorname{tr} \Sigma,
$$

and that the minimum is attained at $\mathbf{c}=\mu$.
7. Assume $\mathbf{Y} \sim t_{p, v}(\mu, \Lambda)$ follows a multivariate t distribution. Let \mathbf{Y} be partitioned as $\mathbf{Y}=\binom{\mathbf{Y}_{1}}{\mathbf{Y}_{2}}$, with \mathbf{Y}_{i} of dimension p_{i} and $p=p_{1}+p_{2}$. Demonstrate the following:
(a) The expected value is $E(\mathbf{Y})=\mu$, and the covariance is $\operatorname{Cov}(\mathbf{Y})=[v /(v-2)] \Lambda$, $v>2$.
(b) The quadratic form $p^{-1}(\mathbf{Y}-\mu)^{T} \Lambda^{-1}(\mathbf{Y}-\mu)$ follows an F distribution $F(p, v)$.
(c) The marginal distribution is $\mathbf{Y}_{2} \sim t_{p_{2}, v}\left(\mu_{2}, \Lambda_{22}\right)$, where

$$
\mu=\binom{\mu_{1}}{\mu_{2}}
$$

and

$$
\Lambda=\left(\begin{array}{ll}
\Lambda_{11} & \Lambda_{12} \\
\Lambda_{21} & \Lambda_{22}
\end{array}\right)
$$

