Problem Set 3–STAT 7200

- 1. Let $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ be a random sample with $\mathbf{Y}_i \sim N_p(0, \Sigma)$, and write \mathbb{Y} for the $n \times p$ matrix whose *i*-th row is \mathbf{Y}_i . Let $C = \frac{1}{n} \mathbf{1}^T$, where **1** is the *n*-dimensional vector of ones, and let $A = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^T$. Show that
 - (a) $\mathbb{Y}^T A \mathbb{Y} = (n-1)S_n$;
 - (b) $C \mathbb{Y} = \bar{\mathbf{Y}}^T$.
- 2. Let $S \sim W_p(m, \Sigma)$, and let *B* be a $q \times p$ matrix. Show that

$$BSB^T \sim W_p(m, B\Sigma B^T).$$

- 3. Let $S \sim W_p(m)$, with $m \ge p$. Show that

 - (a) $\frac{1}{\mathbf{t}^T S^{-1} \mathbf{t}} \sim \chi^2 (m p + 1)$ for any $\mathbf{t} \in \mathbb{R}^p$ with unit norm. (b) If **Y** and *S* are independent and $\mathbf{Y} \neq 0$ almost surely, then **Y** is independent of

$$\frac{\mathbf{Y}^T \mathbf{Y}}{\mathbf{Y}^T S^{-1} \mathbf{Y}} \sim \chi^2 (m-p+1).$$

Hint: You can use the fact that if *H* is an orthogonal matrix, then $HSH^T \sim W_p(m)$.

4. Let $S \sim W_p(m)$ with $m \ge p$, and consider the correlation matrix *R*, where the (i, j)-th entry is given by

$$r_{ij} = \frac{w_{ij}}{w_{ii}^{1/2} w_{jj}^{1/2}}.$$

Show that the density of *R* is given by

$$f(R) = \frac{(\Gamma(m/2))^p}{\Gamma_p(m/2)} |R|^{(m-p-1)/2}.$$

Hint: Use the transformation $S \mapsto (w_{11}, \dots, w_{pp}, R)$.

5. Let $S \sim W_p(m, \Sigma)$, and let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^p$ be fixed. Show that the quadratic forms $\mathbf{a}^T S \mathbf{a}$ and $\mathbf{b}^T S \mathbf{b}$ are independent if and only if $\mathbf{a}^T \Sigma \mathbf{b} = 0$.