Problem Set 3-STAT 7200

1. Let $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$ be a random sample with $\mathbf{Y}_{i} \sim N_{p}(0, \Sigma)$, and write \mathbb{Y} for the $n \times p$ matrix whose i-th row is \mathbf{Y}_{i}. Let $C=\frac{1}{n} \mathbf{1}^{T}$, where $\mathbf{1}$ is the n-dimensional vector of ones, and let $A=I_{n}-\frac{1}{n} \mathbf{1 1}$. Show that
(a) $\mathscr{Y}^{T} A \mathbb{Y}=(n-1) S_{n}$;
(b) $C \mathbb{Y}=\overline{\mathbf{Y}}^{T}$.
2. Let $S \sim W_{p}(m, \Sigma)$, and let B be a $q \times p$ matrix. Show that

$$
B S B^{T} \sim W_{p}\left(m, B \Sigma B^{T}\right)
$$

3. Let $S \sim W_{p}(m)$, with $m \geq p$. Show that
(a) $\frac{1}{\mathbf{t}^{T} S^{-1} \mathbf{t}} \sim \chi^{2}(m-p+1)$ for any $\mathbf{t} \in \mathbb{R}^{p}$ with unit norm.
(b) If \mathbf{Y} and S are independent and $\mathbf{Y} \neq 0$ almost surely, then \mathbf{Y} is independent of

$$
\frac{\mathbf{Y}^{T} \mathbf{Y}}{\mathbf{Y}^{T} S^{-1} \mathbf{Y}} \sim \chi^{2}(m-p+1)
$$

Hint: You can use the fact that if H is an orthogonal matrix, then $H S H^{T} \sim W_{p}(m)$.
4. Let $S \sim W_{p}(m)$ with $m \geq p$, and consider the correlation matrix R, where the (i, j)-th entry is given by

$$
r_{i j}=\frac{w_{i j}}{w_{i i}^{1 / 2} w_{j j}^{1 / 2}}
$$

Show that the density of R is given by

$$
f(R)=\frac{(\Gamma(m / 2))^{p}}{\Gamma_{p}(m / 2)}|R|^{(m-p-1) / 2} .
$$

Hint: Use the transformation $S \mapsto\left(w_{11}, \ldots, w_{p p}, R\right)$.
5. Let $S \sim W_{p}(m, \Sigma)$, and let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{p}$ be fixed. Show that the quadratic forms $\mathbf{a}^{T} S \mathbf{a}$ and $\mathbf{b}^{T} S \mathbf{b}$ are independent if and only if $\mathbf{a}^{T} \Sigma \mathbf{b}=0$.

