## Problem Set 5-STAT 7200

1. Consider the following mixed-effect ANOVA model:

$$
Y_{i j}=\mu+\delta_{i}+\tau_{j}+\epsilon_{i j}, \quad i=1, \ldots, n, \quad j=1, \ldots, p
$$

where $\delta_{i} \sim N\left(0, \sigma_{\delta}^{2}\right)$ and $\epsilon_{i j} \sim N\left(0, \sigma^{2}\right)$ are all mutually independent. The parameters $\mu$ and $\tau_{j}$ are unknown, and they satisfy the constraint $\sum_{j=1}^{p} \tau_{j}=0$. Let $\mathbf{Y}_{i}=$ $\left(Y_{i 1}, \ldots, Y_{i p}\right)$ and show that

$$
\begin{aligned}
E\left(\mathbf{Y}_{i}\right) & =\left(\mu+\beta_{1}, \mu+\beta_{p}\right), \\
\operatorname{Cov}\left(\mathbf{Y}_{i}\right) & =\sigma_{\delta}^{2} \mathbf{1}_{p} \mathbf{1}_{p}^{T}+\sigma^{2} I_{p} .
\end{aligned}
$$

Moreover, show that $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$ are independent and identically distributed $N_{p}\left(\boldsymbol{\eta}, \Sigma_{s}\right)$, where

$$
\begin{aligned}
\boldsymbol{\eta} & =\left(\mu+\beta_{1}, \mu+\beta_{p}\right), \\
\Sigma_{s} & =\sigma_{\delta}^{2} \mathbf{1}_{p} \mathbf{1}_{p}^{T}+\sigma^{2} I_{p} .
\end{aligned}
$$

2. Using the same notation as Problem 1: let $H=\left(h_{1}, H_{2}\right)$ be a $p \times p$ matrix whose first column is $h_{1}$ is $\frac{1}{\sqrt{p}} \mathbf{1}_{p}$. Consider the transformation

$$
\mathbf{X}_{i}=H_{2}^{T} \mathbf{Y}_{i}, \quad i=1, \ldots, n .
$$

Show that $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ are independent and normally distributed $N_{p}\left(0, \boldsymbol{\xi}, \sigma^{2} I_{p-1}\right)$, where $\boldsymbol{\xi}=H_{2}^{T} \boldsymbol{\eta}$. Use this property to construct a test for $H_{0}: \Sigma=\Sigma_{s}$.
3. Given a random sample $\mathbf{Y}_{i} \sim N_{p}(\mu, \Sigma), i=1, \ldots, n$, with $\Sigma$ positive definite, show that the likelihood ratio test for

$$
H_{0}: \Sigma=\gamma \Sigma_{0},
$$

where $\Sigma_{0}$ is known, is given by

$$
\Lambda^{2 / n}=\frac{\left|\Sigma_{0}^{-1} V\right|}{\left(\frac{1}{p} \operatorname{tr} \Sigma_{0}^{-1} V\right)^{p}} .
$$

Give an approximation to its distribution under $H_{0}$.
4. Let $\mathbf{Y}_{\ell 1}, \ldots, \mathbf{Y}_{\ell n_{\ell}} \sim N_{p}\left(\mu_{\ell}, \Sigma\right)$, with $\ell=1, \ldots, g$. Suppose that we decompose $\mathbf{Y}_{\ell i}=$ $\left(\mathbf{Y}_{\ell i}^{1}, \mathbf{Y}_{\ell i}^{2}\right)$. Accordingly, we can decompose

$$
\mu_{\ell}=\left(\mu_{1 \ell}, \mu_{2 \ell}\right), \quad W=\left(\begin{array}{ll}
W_{11} & W_{12} \\
W_{21} & W_{22}
\end{array}\right), \quad T=\left(\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right),
$$

where $T=W+B$.
Assume that the second components of the means are equal, i.e. $\mu_{21}=\cdots=\mu_{2 g}$. Consider the hypothesis test where $H_{0}$ is that the first components of the means are equal, i.e. $H_{0}: \mu_{11}=\cdots=\mu_{1 g} .{ }^{1}$ Show that the likelihood ratio $\Lambda$ is given by

$$
\Lambda^{2 / n}=\frac{\left|W_{11 \mid 2}\right|}{\left|T_{11 \mid 2}\right|}=\frac{|W|}{|T|}\left(\frac{\left|W_{11}\right|}{\left|T_{11}\right|}\right)^{-1}
$$

where $W_{11 \mid 2}=W_{11}-W_{12} W_{22}^{-1} W_{21}$ and similarly for $T_{11 \mid 2}$.
5. Let $\lambda_{1}, \ldots, \lambda_{s}$ be the eigenvalues of the matrix $W^{-1} B$, where $s=\min (p, g-1)$ and where $W, B$ are the within (and between) sum of squares and cross-products from MANOVA. Show that the following equalities hold:

$$
\begin{aligned}
\frac{|W|}{|B+W|} & =\prod_{i=1}^{s} \frac{1}{1+\lambda_{i}} \\
\operatorname{tr}\left(B(B+W)^{-1}\right) & =\sum_{i=1}^{s} \frac{\lambda_{i}}{1+\lambda_{i}} \\
\operatorname{tr}\left(W^{-1} B\right) & =\sum_{i=1}^{s} \lambda_{i} .
\end{aligned}
$$

6. Using the same notation as Problem 5 , show that
(a) $\operatorname{tr} B(W+B)^{-1} \leq-\log \frac{|W|}{|W+B|} \leq \operatorname{tr} B W^{-1}$;
(b) $\sum_{i=1}^{s} \frac{\lambda_{i}}{1+\lambda_{i}} \leq \log \prod_{i=1}^{s}\left(1+\lambda_{i}\right) \leq \sum_{i=1}^{s} \lambda_{i}$.
[^0]
[^0]:    ${ }^{1}$ This is called the multivariate analysis of covariance.

