Multivariate Linear Regression

Max Turgeon

STAT 7200–Multivariate Statistics

- Introduce the linear regression model for a multivariate outcome
- Discuss inference for the regression parameters
- Discuss model selection
- Discuss influence measures

Multivariate Linear Regression model

- We are interested in the relationship between p outcomes Y_1, \ldots, Y_p and q covariates X_1, \ldots, X_q .
 - We will write $\mathbf{Y} = (Y_1, \dots, Y_p)$ and $\mathbf{X} = (1, X_1, \dots, X_q)$.
- We will assume a **linear relationship**:
 - $E(\mathbf{Y} \mid \mathbf{X}) = B^T \mathbf{X}$, where B is a $(q+1) \times p$ matrix of regression coefficients.
- We will also assume homoscedasticity:
 - $\cdot \operatorname{Cov}(\mathbf{Y} \mid \mathbf{X}) = \Sigma$, where Σ is positive-definite.
 - In other words, the (conditional) covariance of ${\bf Y}$ does not depend on ${\bf X}.$

Relationship with Univariate regression i

- Let σ_i^2 be the *i*-th diagonal element of Σ .
- Let β_i be the *i*-th column of B.
- $\cdot \,$ From the model above, we get p univariate regressions:

$$\cdot E(Y_i \mid \mathbf{X}) = \mathbf{X}^T \beta_i;$$

•
$$\operatorname{Var}(Y_i \mid \mathbf{X}) = \sigma_i^2$$
.

- However, we will use the correlation between outcomes for hypothesis testing
- This follows from the assumption that each component Y_i is linearly associated with the same covariates \mathbf{X} .

Relationship with Univariate regression ii

- If we assumed a different set of covariates X_i for each outcome Y_i and still wanted to use the correlation between the outcomes, we would get the Seemingly Unrelated Regressions (SUR) model.
 - This model is sometimes used by econometricians.

Least-Squares Estimation i

- Let $\mathbf{Y}_1, \ldots, \mathbf{Y}_n$ be a random sample of size n, and let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be the corresponding sample of covariates.
- We will write \mathbb{Y} and \mathbb{X} for the matrices whose i-th row is \mathbf{Y}_i and \mathbf{X}_i , respectively.
 - We can then write $E(\mathbb{Y} \mid \mathbb{X}) = \mathbb{X}B$.
- For Least-Squares Estimation, we will be looking for the estimator \hat{B} of B that minimises a least-squares criterion:
 - $\cdot LS(B) = \operatorname{tr}\left[(\mathbb{Y} \mathbb{X}B)^T (\mathbb{Y} \mathbb{X}B) \right]$
 - Note: This criterion is also known as the (squared) Frobenius norm; i.e. $LS(B) = ||\mathbb{Y} \mathbb{X}B||_F^2$.

Least-Squares Estimation ii

- Note 2: If you expand the matrix product and look at the diagonal, you can see that the Frobenius norm is equivalent to the sum of the squared entries.
- To minimise LS(B), we could use matrix derivatives...
- Or, we can expand the matrix product along the diagonal and compute the trace.
- Let $\mathbf{Y}_{(j)}$ be the j-th column of \mathbb{Y} .

Least-Squares Estimation iii

Ι

· In other words, $\mathbf{Y}_{(j)} = (Y_{1j}, \dots, Y_{nj})$ contains the n values for the outcome Y_j . We then have

$$\begin{split} \mathcal{L}S(B) &= \operatorname{tr}\left[(\mathbb{Y} - \mathbb{X}B)^T (\mathbb{Y} - \mathbb{X}B) \right] \\ &= \sum_{j=1}^p (\mathbf{Y}_{(j)} - \mathbb{X}\beta_j)^T (\mathbf{Y}_{(j)} - \mathbb{X}\beta_j) \\ &= \sum_{j=1}^p \sum_{i=1}^n (Y_{ij} - \beta_j^T \mathbf{X}_i)^2. \end{split}$$

• For each j, the sum $\sum_{i=1}^{n} (Y_{ij} - \beta_j^T \mathbf{X}_i)^2$ is simply the least-squares criterion for the corresponding univariate linear regression.

Least-Squares Estimation iv

$$\cdot \ \hat{\beta}_j = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbf{Y}_{(j)}$$

- But since LS(B) is a sum of p positive terms, each minimised at $\hat{\beta}_j$, the whole is sum is minimised at

$$\hat{B} = \begin{pmatrix} \hat{\beta}_1 & \cdots & \hat{\beta}_p \end{pmatrix}.$$

• Or put another way:

$$\hat{B} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}.$$

- \cdot We still have not made any distributional assumptions on \mathbf{Y} .
 - We do not need to assume normality to derive the least-squares estimator.
- The least-squares estimator is *unbiased*:

$$E(\hat{B} \mid \mathbb{X}) = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X} E(\mathbb{Y} \mid \mathbb{X})$$
$$= (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{X} B$$
$$= B.$$

Comments ii

- We did not use the covariance matrix $\boldsymbol{\Sigma}$ anywhere in the estimation process. But note that:

$$Cov(\hat{\beta}_i, \hat{\beta}_j) = Cov\left((\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbf{Y}_{(i)}, (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbf{Y}_{(j)}\right)$$
$$= (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T Cov\left(\mathbf{Y}_{(i)}, \mathbf{Y}_{(j)}\right) \left((\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T\right)^T$$
$$= (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T (\sigma_{ij} I_n) \mathbb{X} (\mathbb{X}^T \mathbb{X})^{-1}$$
$$= \sigma_{ij} (\mathbb{X}^T \mathbb{X})^{-1},$$

where σ_{ij} is the (i, j)-th entry of Σ .

```
# Let's revisit the plastic film data
library(heplots)
library(tidyverse)
```

```
Y <- Plastic %>%
select(tear, gloss, opacity) %>%
as.matrix
```

```
X <- model.matrix(~ rate, data = Plastic)
head(X)</pre>
```

Example ii

##		(Intercept)	rateHigh
##	1	1	Θ
##	2	1	Θ
##	3	1	Θ
##	4	1	Θ
##	5	1	Θ
##	6	1	Θ

(B_hat <- solve(crossprod(X)) %*% t(X) %*% Y)</pre>

Example iii

##		tear	gloss	opacity
##	(Intercept)	6.49	9.57	3.79
##	rateHigh	0.59	-0.51	0.29

tear gloss opacity
(Intercept) 6.49 9.57 3.79
rateHigh 0.59 -0.51 0.29

Geometry of LS i

• Let
$$P = \mathbb{X}(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T$$
.

• *P* is symmetric and *idempotent*:

$$P^{2} = \mathbb{X}(\mathbb{X}^{T}\mathbb{X})^{-1}\mathbb{X}^{T}\mathbb{X}(\mathbb{X}^{T}\mathbb{X})^{-1}\mathbb{X}^{T} = \mathbb{X}(\mathbb{X}^{T}\mathbb{X})^{-1}\mathbb{X}^{T} = P.$$

- Let $\hat{\mathbb{Y}}=\mathbb{X}\hat{B}$ be the fitted values, and $\hat{\mathbb{E}}=\mathbb{Y}-\hat{\mathbb{Y}},$ the residuals.
 - $\cdot \ \, \text{We have } \hat{\mathbb{Y}}=P\mathbb{Y}.$
 - · We also have $\hat{\mathbb{E}} = (I P) \mathbb{Y}$.

Geometry of LS ii

• Putting all this together, we get

$$\hat{\mathbb{Y}}^T \hat{\mathbb{E}} = (P \mathbb{Y})^T (I - P) \mathbb{Y}$$
$$= \mathbb{Y}^T P (I - P) \mathbb{Y}$$
$$= \mathbb{Y}^T (P - P^2) \mathbb{Y}$$
$$= 0.$$

- In other words, the fitted values and the residuals are **orthogonal**.
- Similarly, we can see that $\mathbb{X}^T \hat{\mathbb{E}} = 0$ and $P \mathbb{X} = \mathbb{X}$.
- Interpretation: $\hat{\mathbb{Y}}$ is the orthogonal projection of \mathbb{Y} onto the column space of \mathbb{X} .

```
Y_hat <- fitted(fit)
residuals <- residuals(fit)</pre>
```

crossprod(Y_hat, residuals)

tear gloss opacity
tear 1.776357e-15 -1.998401e-15 1.776357e-15
gloss -8.881784e-16 -1.998401e-15 -1.065814e-14
opacity -4.440892e-16 -1.887379e-15 1.776357e-15

crossprod(X, residuals)

tear gloss opacity
(Intercept) 1.110223e-16 -3.330669e-16 -4.440892e-16
rateHigh 3.330669e-16 -3.330669e-16 -4.440892e-16

```
isZero(crossprod(Y_hat, residuals))
```

[1] TRUE

isZero(crossprod(X, residuals))

[1] TRUE

Maximum Likelihood Estimation i

- We now introduce distributional assumptions on $\mathbf{Y}:$

$$\mathbf{Y} \mid \mathbf{X} \sim N_p(B^T \mathbf{X}, \Sigma).$$

- This is the same conditions on the mean and covariance as above. The only difference is that we now assume the residuals are normally distributed.
- Note: The distribution above is conditional on \mathbf{X} . It could happen that the marginal distribution of \mathbf{Y} is not normal.

Maximum Likelihood Estimation ii

- Theorem: Suppose \mathbb{X} has full rank q + 1, and assume that $n \geq q + p + 1$. Then the least-squares estimator $\hat{B} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}$ of B is also the maximum likelihood estimator. Moreover, we have
 - 1. \hat{B} is normally distributed.
 - 2. The maximum likelihood estimator for Σ is $\hat{\Sigma} = \frac{1}{n} \hat{\mathbb{E}}^T \hat{\mathbb{E}}$.
 - 3. $n\hat{\Sigma}$ follows a Wishart distribution $W_p(n-q-1,\Sigma)$ on n-q-1 degrees of freedom.
 - 4. The maximised likelihood is $L(\hat{B},\hat{\Sigma})=(2\pi)^{-np/2}|\hat{\Sigma}|^{-n/2}\exp(-pn/2).$

- Note: Looking at the degrees of freedom of the Wishart distribution, we can infer that $\hat{\Sigma}$ is a biased estimator of Σ . An unbiased estimator is

$$S = \frac{1}{n-q-1} \hat{\mathbb{E}}^T \hat{\mathbb{E}}.$$

library(heplots)

head(NLSY)

##		math	read	antisoc	hyperact	income	educ
##	1	50.00	45.24	4	3	52.518	14
##	2	28.57	28.57	Θ	Θ	42.600	12
##	3	50.00	53.57	2	2	50.000	12
##	4	32.14	34.52	Θ	2	6.082	12
##	5	21.43	22.62	Θ	2	7.410	14
##	6	15.48	40.48	1	Θ	12.988	12

coef(fit)

math read
(Intercept) 8.7828704 15.88479888
income 0.0893217 0.01366238
educ 1.2755492 0.94949980

range(NLSY\$income)

[1] 0.000 146.942

```
range(NLSY$educ)
```

[1] 6 20

Confidence and Prediction Regions i

- Suppose we have a new observation X_0 . We are interested in making predictions and inference about the corresponding outcome vector Y_0 .
- First, since \hat{B} is an unbiased estimator of B, we see that

$$E(\mathbf{X}_0^T \hat{B}) = \mathbf{X}_0^T E(\hat{B}) = \mathbf{X}_0^T B = E(\mathbf{Y}_0).$$

Therefore, it makes sense to estimate \mathbf{Y}_0 using $\mathbf{X}_0^T \hat{B}$.

• What is the estimation error? Let's look at the covariance of $\mathbf{X}_0^T \hat{\beta}_i$ and $\mathbf{X}_0^T \hat{\beta}_j$

$$\operatorname{Cov}\left(\mathbf{X}_{0}^{T}\hat{\beta}_{i}, \mathbf{X}_{0}^{T}\hat{\beta}_{j}\right) = \mathbf{X}_{0}^{T}\operatorname{Cov}\left(\hat{\beta}_{i}, \hat{\beta}_{j}\right)\mathbf{X}_{0}$$
$$= \sigma_{ij}\mathbf{X}_{0}^{T}(\mathbb{X}^{T}\mathbb{X})^{-1}\mathbf{X}_{0}.$$

Confidence and Prediction Regions ii

- What is the forecasting error? In that case, we also need to take into account the extra variation coming from the residuals.
- In other words, we also need to sample a new "error" term
 E₀ = (E₀₁,..., E_{0p}) independently of X₀.
 Let Y
 ^T₀ = X^T₀B + E₀ be the new value.
- The forecast error is given by

$$\tilde{\mathbf{Y}}_0 - \mathbf{X}_0^T \hat{B} = \mathbf{E}_0 - \mathbf{X}_0^T (\hat{B} - B).$$

• Since $E(\tilde{\mathbf{Y}}_0 - \mathbf{X}_0^T \hat{B}) = 0$, we can still deduce that $\mathbf{X}_0^T \hat{B}$ is an unbiased predictor of \mathbf{Y}_0 .

Confidence and Prediction Regions iii

• Now let's look at the covariance of the forecast errors in each component:

$$E\left[\left(\tilde{Y}_{0i} - \mathbf{X}_{0}^{T}\hat{\beta}_{i}\right)\left(\tilde{Y}_{0j} - \mathbf{X}_{0}^{T}\hat{\beta}_{j}\right)\right]$$

= $E\left[\left(E_{0i} - \mathbf{X}_{0}^{T}(\hat{\beta}_{i} - \beta_{i})\right)\left(E_{0j} - \mathbf{X}_{0}^{T}(\hat{\beta}_{j} - \beta_{j})\right)\right]$
= $E(E_{0i}E_{0j}) + \mathbf{X}_{0}^{T}E\left[(\hat{\beta}_{i} - \beta_{i})(\hat{\beta}_{j} - \beta_{j})\right]\mathbf{X}_{0}$
= $\sigma_{ij} + \sigma_{ij}\mathbf{X}_{0}^{T}(\mathbb{X}^{T}\mathbb{X})^{-1}\mathbf{X}_{0}$
= $\sigma_{ij}\left(1 + \mathbf{X}_{0}^{T}(\mathbb{X}^{T}\mathbb{X})^{-1}\mathbf{X}_{0}\right).$

• Therefore, we can see that the difference between the estimation error and the forecasting error is σ_{ij} .

```
# Recall our model for Plastic
fit <- lm(cbind(tear, gloss, opacity) ~ rate,</pre>
           data = Plastic)
new_x <- data.frame(rate = factor("High",</pre>
                                     levels = c("Low",
                                                  "High")))
(prediction <- predict(fit, newdata = new x))</pre>
```

```
## tear gloss opacity
## 1 7.08 9.06 4.08
```

```
X <- model.matrix(fit)
```

S <- crossprod(resid(fit))/(nrow(Plastic) - ncol(X))
new_x <- model.matrix(~rate, new_x)</pre>

quad_form <- drop(new_x %*% solve(crossprod(X)) %*%
 t(new_x))</pre>

Estimation covariance
(est_cov <- S * quad_form)</pre>

Example iii

##		tear	gloss	opacity
##	tear	0.014027778	0.003994444	-0.006083333
##	gloss	0.003994444	0.021027778	0.014716667
##	opacity	-0.006083333	0.014716667	0.409916667

#	Foi	recas	stir	ıg	COVa	ari	iance	
(1	fct_	cov	<-	S	*(1	+	quad_	_form))

##		tear	gloss	opacity
##	tear	0.15430556	0.04393889	-0.06691667
##	gloss	0.04393889	0.23130556	0.16188333
##	opacity	-0.06691667	0.16188333	4.50908333

Example iv

[,1] [,2]
tear 6.847860 7.312140
gloss 8.775781 9.344219
opacity 2.825115 5.334885

##		[,1]	[,2]
##	tear	6.31007778	7.849922
##	gloss	8.11735297	10.002647
##	opacity	-0.08198204	8.241982

- We can use a Likelihood Ratio test to assess the evidence in support of two nested models.
- Write

$$B = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}, \qquad \mathbb{X} = \begin{pmatrix} \mathbb{X}_1 & \mathbb{X}_2 \end{pmatrix},$$

where B_1 is $(r+1) \times p$, B_2 is $(q-r) \times p$, \mathbb{X}_1 is $n \times (r+1)$, \mathbb{X}_2 is $n \times (q-r)$, and $r \ge 0$ is a non-negative integer.

Likelihood Ratio Tests ii

• We want to compare the following models:

Full model :
$$E(\mathbf{Y} \mid \mathbf{X}) = B^T \mathbf{X}$$

Nested model : $E(\mathbf{Y} \mid \mathbf{X}_1) = B_1^T \mathbf{X}_1$

• According to our previous theorem, the corresponding maximised likelihoods are

Full model : $L(\hat{B}, \hat{\Sigma}) = (2\pi)^{-np/2} |\hat{\Sigma}|^{-n/2} \exp(-pn/2)$ Nested model : $L(\hat{B}_1, \hat{\Sigma}_1) = (2\pi)^{-np/2} |\hat{\Sigma}_1|^{-n/2} \exp(-pn/2)$

Likelihood Ratio Tests iii

• Therefore, taking the ratio of the likelihoods of the nested model to the full model, we get

$$\Lambda = \frac{L(\hat{B}_1, \hat{\Sigma}_1)}{L(\hat{B}, \hat{\Sigma})} = \left(\frac{|\hat{\Sigma}|}{|\hat{\Sigma}_1|}\right)^{n/2}.$$

• Or equivalently, we get Wilks' lambda statistic:

$$\Lambda^{2/n} = \frac{|\hat{\Sigma}|}{|\hat{\Sigma}_1|}.$$

• As discussed in the lecture on MANOVA, there is no closed-form solution for the distribution of this statistic under the null hypothesis $H_0: B_2 = 0$, but there are many approximations.

Likelihood Ratio Tests iv

- Two important special cases:
 - When r = 0, we are testing the full model against the empty model (i.e. only the intercept).
 - When X_2 only contains one covariate, we are testing the full model against a simpler model without that covariate. In other words, we are testing for the *significance* of that covariate.

Other Multivariate Test Statistics i

- The Wilks' lambda statistic can actually be expressed in terms of the (generalized) eigenvalues of a pair of matrices (H, E):
 - $\cdot \ E = n \hat{\Sigma}$ is the **error** matrix.
 - $\cdot \ H = n(\hat{\Sigma}_1 \hat{\Sigma})$ is the **hypothesis** matrix.
- Under our assumptions about the rank of X and the sample size, E is (almost surely) invertible, and therefore we can look at the nonzero eigenvalues of HE^{-1} :
 - · Let $\eta_1 \geq \cdots \geq \eta_s$ be those nonzero eigenvalues, where $s = \min(p, q-r).$
 - Equivalently, these eigenvalues are the nonzero roots of the determinantal equation det $((\hat{\Sigma}_1 \hat{\Sigma}) \eta \hat{\Sigma}) = 0.$

Other Multivariate Test Statistics ii

• Recall the four classical multivariate test statistics:

Wilks' lambda :
$$\prod_{i=1}^{s} \frac{1}{1+\eta_i} = \frac{|E|}{|E+H|}$$

Pillai's trace :
$$\sum_{i=1}^{s} \frac{\eta_i}{1+\eta_i} = \operatorname{tr} \left(H(H+E)^{-1} \right)$$

Hotelling-Lawley trace :
$$\sum_{i=1}^{s} \eta_i = \operatorname{tr} \left(HE^{-1} \right)$$

Roy's largest root :
$$\frac{\eta_1}{1+\eta_1}$$

• Under the null hypothesis $H_0: B_2 = 0$, all four statistics can be well-approximated using the F distribution.

Other Multivariate Test Statistics iii

- \cdot Note: When r = q 1, all four tests are equivalent.
- In general, as the sample size increases, all four tests give similar results. For finite sample size, Roy's largest root has good power only if there the leading eigenvalue η_1 is significantly larger than the other ones.

```
library(pander)
pander(anova(full_model, test = "Wilks"))
```

-			approx	num		
	Df	Wilks	F	Df	den Df	Pr(>F)
(Intercept)	1	0.09	1243.04	2	237	0.00
income	1	0.93	9.19	2	237	0.00
educ	1	0.95	6.57	2	237	0.00
antisoc	1	0.99	1.16	2	237	0.31
hyperact	1	0.99	1.74	2	237	0.18
Residuals	238	NA	NA	NA	NA	NA

pander(anova(full_model, test = "Roy"))

			approx	num		
	Df	Roy	F	Df	den Df	Pr(>F)
(Intercept)	1	10.49	1243.04	2	237	0.00
income	1	0.08	9.19	2	237	0.00
educ	1	0.06	6.57	2	237	0.00
antisoc	1	0.01	1.16	2	237	0.31
hyperact	1	0.01	1.74	2	237	0.18
Residuals	238	NA	NA	NA	NA	NA

Visualize the error and hypothesis ellipses heplot(full_model)

Example v

Example vi

				approx	num		
Res.Df	Df	Gen.var.	Wilks	F	Df	den Df	Pr(>F)
238	NA	82.87	NA	NA	NA	NA	NA
240	2	83.18	0.98	1.44	4	474	0.22

				approx	num		
Res.Df	Df	Gen.var.	Roy	F	Df	den Df	Pr(>F)
238	NA	82.87	NA	NA	NA	NA	NA
240	2	83.18	0.02	2.64	2	238	0.07

[1] 0.022196515 0.002277582

Information Criteria i

- We can use hypothesis testing for model building:
 - Add covariates that significantly improve the model (*forward selection*);
 - · Remove non-significant covariates (backward elimination).
- Another approach is to use Information Criteria.
- The general form of Akaike's information criterion:

$$-2\log L(\hat{B}, \hat{\Sigma}) + 2d,$$

where d is the number of parameters to estimate.

• In multivariate regression, this would be

$$d = (q+1)p + p(p+1)/2.$$

Information Criteria ii

• Therefore, we get (up to a constant):

$$AIC = n \log |\hat{\Sigma}| + 2(q+1)p + p(p+1).$$

- The intuition behind AIC is that it estimates the Kullback-Leibler divergence between the posited model and the true data-generating mechanism.
 - So smaller is better.
- Model selection using information criteria proceeds as follows:
 - 1. Select models of interest $\{M_1, \ldots, M_K\}$. They do not need to be nested, and they do not need to involve the same variables.
 - 2. Compute the AIC for each model.
 - 3. Select the model with the smallest AIC.

Information Criteria iii

- The set of interesting models should be selected using domain-specific knowledge when possible.
 - If it is not feasible, you can look at all possible models between the empty model and the full model.
- There are many variants of AIC, each with their own trade-offs.
 - For more details, see Timm (2002) Section 4.2.d.

```
## AIC(full_model)
# Error in logLik.lm(full_model) :
# 'logLik.lm' does not support multiple responses
class(full_model)
```

[1] "mlm" "lm"

Example (cont'd) ii

```
logLik.mlm <- function(object, ...) {</pre>
  resids <- residuals(object)</pre>
  Sigma ML <- crossprod(resids)/nrow(resids)</pre>
  ans <- sum(mvtnorm::dmvnorm(resids, log = TRUE,</pre>
                                   sigma = Sigma ML))
  df <- prod(dim(coef(object))) +</pre>
    choose(ncol(Sigma ML) + 1, 2)
  attr(ans, "df") <- df</pre>
  class(ans) <- "logLik"</pre>
  return(ans)
}
```

Example (cont'd) iii

```
logLik(full_model)
```

```
## 'log Lik.' -1757.947 (df=13)
```

AIC(full_model)

[1] 3541.894

AIC(rest_model)

[1] 3539.781

```
# Model selection for Plastic data
lhs <- "cbind(tear, gloss, opacity) ~"</pre>
rhs_form <- c("1", "rate", "additive".</pre>
               "rate+additive", "rate*additive")
purrr::map df(rhs form, function(rhs) {
  form <- formula(paste(lhs, rhs))</pre>
  fit <- lm(form, data = Plastic)</pre>
  return(data.frame(model = rhs, aic = AIC(fit),
```

```
stringsAsFactors = FALSE))
```

})

##	model	aic
## 1	1	155.4330
## 2	rate	143.7768
## 3	additive	150.9542
## 4	rate+additive	137.9592
## 5	rate*additive	138.9157

Multivariate Influence Measures i

• Earlier we introduced the projection matrix

$$P = \mathbb{X}(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T$$

and we noted that $\hat{\mathbb{Y}}=P\mathbb{Y}.$

• Looking at one row at a time, we can see that

$$\hat{\mathbf{Y}}_{i} = \sum_{j=1}^{n} P_{ij} \mathbf{Y}_{j}$$
$$= P_{ii} \mathbf{Y}_{i} + \sum_{j \neq i} P_{ij} \mathbf{Y}_{i},$$

where P_{ij} is the (i, j)-th entry of P.

Multivariate Influence Measures ii

- In other words, the diagonal element P_{ii} represents the *leverage* (or influence) of observation \mathbf{Y}_i on the fitted value $\hat{\mathbf{Y}}_i$.
 - Observation \mathbf{Y}_i is said to have a high leverage if P_{ii} is large compared to the other element on the diagonal.
- Let $S = \frac{1}{n-q-1} \hat{\mathbb{E}}^T \hat{\mathbb{E}}$ be the unbiased estimator of Σ , and let $\hat{\mathbf{E}}_i$ be the *i*-th row of $\hat{\mathbb{E}}$.
- We define the multivariate **internally Studentized residuals** as follows:

$$r_i = \frac{\hat{\mathbf{E}}_i^T S^{-1} \hat{\mathbf{E}}_i}{1 - P_{ii}}$$

• If we let $S_{(i)}$ be the estimator of Σ where we have removed row i from the residual matrix $\hat{\mathbb{E}}$, we define the multivariate **externally Studentized residuals** as follows:

$$T_i^2 = \frac{\hat{\mathbf{E}}_i^T S_{(i)}^{-1} \hat{\mathbf{E}}_i}{1 - P_{ii}}.$$

 \cdot An observation \mathbf{Y}_i may be considered a potential outlier if

$$\left(\frac{n-q-p-1}{p(n-q-2)}\right)T_i^2 > F_\alpha(p,n-q-2).$$

Multivariate Influence Measures iv

• Yet another measure of influence is the multivariate **Cook's distance**.

$$C_i = \frac{P_{ii}}{(1 - P_{ii})^2} \hat{\mathbf{E}}_i^T S^{-1} \hat{\mathbf{E}}_i / (q+1).$$

• An observation \mathbf{Y}_i may be considered a potential outlier if C_i is larger than the median of a chi square distribution with $\nu = p(n - q - 1)$ degrees of freedom.

```
X <- model.matrix(model)
P <- X %*% solve(crossprod(X)) %*% t(X)
lev_values <- diag(P)</pre>
```

```
hist(lev_values, 50)
```

Example ii

Histogram of lev_values

Example iii

```
n <- nrow(marioKart)</pre>
resids <- residuals(model)</pre>
S <- crossprod(resids)/(n - ncol(X))</pre>
S inv <- solve(S)
const <- lev_values/((1 - lev_values)^2*ncol(X))</pre>
cook_values <- const * diag(resids %*% S inv</pre>
                                %*% t(resids))
```

hist(cook_values, 50)

Example iv

Histogram of cook_values

(cutoff <- qchisq(0.5, ncol(S)*(n - ncol(X))))</pre>

[1] 273.3336

which(cook_values > cutoff)

named integer(0)

Strategy for Multivariate Model Building

- 1. Try to identify outliers.
 - This should be done graphically at first.
 - Once the model is fitted, you can also look at influence measures.
- 2. Perform a multivariate test of hypothesis.
- If there is evidence of a multivariate difference, calculate Bonferroni confidence intervals and investigate component-wise differences.
 - The projection of the confidence region onto each variable generally leads to confidence intervals that are too large.

• Recall from our lecture on MANOVA: assume the data comes from *g* populations:

$$\mathbf{Y}_{11}, \ \ldots, \ \mathbf{Y}_{1n_1}$$

 $\vdots \ \ddots \ \vdots \ ,$
 $\mathbf{Y}_{g1}, \ \ldots, \ \mathbf{Y}_{gn_g}$
where $\mathbf{Y}_{\ell 1}, \ldots, \mathbf{Y}_{\ell n_\ell} \sim N_p(\mu_\ell, \Sigma).$

Multivariate Regression and MANOVA ii

• We obtain an equivalent model if we set

Multivariate Regression and MANOVA iii

- Here, $\mathbb Y$ is $n \times p$ and $\mathbb X$ is $n \times g$.
 - $\cdot \;$ The first column of $\mathbb X$ is all ones.
 - The $(i, \ell + 1)$ entry of $\mathbb X$ is 1 iff the i-th row belongs to the ℓ -th group.
 - Note: It is common to have a different constraint on the parameters τ_{ℓ} in regression; here, we assume that $\tau_{g} = 0$.
- In other words, we model group membership using a single categorial covariate and therefore g-1 dummy variables.

• More complicated designs for MANOVA can also be expressed in terms of linear regression:

Multivariate Regression and MANOVA iv

- For example, for two-way MANOVA, we would have two categorical variables. We would also need to include an interaction term to get all combinations of the two treatments.
- In general, fractional factorial designs can be expressed as a linear regression with a carefully selected series of dummy variables.