Multivariate Normal Distribution

Max Turgeon
STAT 7200-Multivariate Statistics

Building the multivariate density

- Let $Z \sim N(0,1)$ be a standard (univariate) normal random variable. Recall that its density is given by

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} z^{2}\right)
$$

- Now if we take $Z_{1}, \ldots, Z_{p} \sim N(0,1)$ independently distributed, their joint density is

Building the multivariate density if

$$
\begin{aligned}
\phi\left(z_{1}, \ldots, z_{p}\right) & =\prod_{i=1}^{p} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} z_{i}^{2}\right) \\
& =\frac{1}{(\sqrt{2 \pi})^{p}} \exp \left(-\frac{1}{2} \sum_{i=1}^{p} z_{i}^{2}\right) \\
& =\frac{1}{(\sqrt{2 \pi})^{p}} \exp \left(-\frac{1}{2} \mathbf{z}^{T} \mathbf{z}\right),
\end{aligned}
$$

where $\mathbf{z}=\left(z_{1}, \ldots, z_{p}\right)$.

- More generally, let $\mu \in \mathbb{R}^{p}$ and let Σ be a $p \times p$ positive definite matrix.

Building the multivariate density iif

- Let $\Sigma=L L^{T}$ be the Cholesky decomposition for Σ.
- Let $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{p}\right)$ be a standard (multivariate) normal random vector, and define $\mathbf{Y}=L \mathbf{Z}+\mu$. We know from a previous lecture that
- $E(\mathbf{Y})=L E(\mathbf{Z})+\mu=\mu$;
- $\operatorname{Cov}(\mathbf{Y})=L \operatorname{Cov}(\mathbf{Z}) L^{T}=\Sigma$.
- To get the density, we need to compute the inverse transformation:

$$
\mathbf{Z}=L^{-1}(\mathbf{Y}-\mu)
$$

Building the multivariate density iv

- The Jacobian matrix J for this transformation is simply L^{-1}, and therefore

$$
\begin{aligned}
|\operatorname{det}(J)| & =\left|\operatorname{det}\left(L^{-1}\right)\right| \\
& =\operatorname{det}(L)^{-1} \quad \text { (positive diagonal elements) } \\
& =\sqrt{\operatorname{det}(\Sigma)}^{-1} \\
& =\operatorname{det}(\Sigma)^{-1 / 2} .
\end{aligned}
$$

Building the multivariate density

- Plugging this into the formula for the density of a transformation, we get

$$
\begin{aligned}
& f\left(y_{1}, \ldots, y_{p}\right)=\frac{1}{\operatorname{det}(\Sigma)^{1 / 2}} \phi\left(L^{-1}(\mathbf{y}-\mu)\right) \\
& =\frac{1}{\operatorname{det}(\Sigma)^{1 / 2}}\left(\frac{1}{(\sqrt{2 \pi})^{p}} \exp \left(-\frac{1}{2}\left(L^{-1}(\mathbf{y}-\mu)\right)^{T} L^{-1}(\mathbf{y}-\mu)\right)\right) \\
& =\frac{1}{\operatorname{det}(\Sigma)^{1 / 2}(\sqrt{2 \pi})^{p}} \exp \left(-\frac{1}{2}(\mathbf{y}-\mu)^{T}\left(L L^{T}\right)^{-1}(\mathbf{y}-\mu)\right) \\
& =\frac{1}{\sqrt{(2 \pi)^{p}|\Sigma|}} \exp \left(-\frac{1}{2}(\mathbf{y}-\mu)^{T} \Sigma^{-1}(\mathbf{y}-\mu)\right)
\end{aligned}
$$

Example i

set. seed (123)

$$
\begin{aligned}
& \mathrm{n}<-1000 ; \mathrm{p}<-2 \\
& \mathrm{Z}<-\operatorname{matrix}(\operatorname{rnorm}(\mathrm{n} * \mathrm{p}), \mathrm{ncol}=\mathrm{p})
\end{aligned}
$$

$m u<-c(1,2)$
Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)
L <- t(chol (Sigma))

Example if

$$
\begin{aligned}
& \mathrm{Y}<-\mathrm{L} \% * \% \mathrm{t}(\mathrm{Z})+\mathrm{mu} \\
& \mathrm{Y}<-\mathrm{t}(\mathrm{Y})
\end{aligned}
$$

colMeans (Y)
\#\# [1] 1.0161282 .044840
$\operatorname{cov}(\mathrm{Y})$
\#\# [,1] [,2]
\#\# [1,] 0.9834589 0.5667194
\#\# [2,] 0.56671941 .0854361

Example ifi

library(tidyverse)
Y \% $>\%$
data.frame() \%>\%
ggplot(aes(X1, X2)) + geom_density_2d()

Example iv

Example v

> library(mvtnorm)
> Y <- $\operatorname{rmvnorm}(n$, mean $=m u$, sigma $=$ Sigma $)$
colMeans (Y)
\#\# [1] 0.98121021 .9829380
$\operatorname{cov}(\mathrm{Y})$

Example vi

```
##
                [,1]
                                    [,2]
## [1,] 0.9982835 0.4906990
## [2,] 0.4906990 0.9489171
```

Y \% >\%
data.frame() \%>\%
ggplot(aes(X1, X2)) +
geom_density_2d()

Example vif

Characteristic function i

- Using a similar strategy, we can derive the characteristic function of the multivariate normal distribution.
- Recall that the characteristic function of the univariate standard normal distribution is given by

$$
\varphi(t)=\exp \left(\frac{-t^{2}}{2}\right)
$$

Characteristic function if

- Therefore, if we have $Z_{1}, \ldots, Z_{p} \sim N(0,1)$ independent, the characteristic function of $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{p}\right)$ is

$$
\begin{aligned}
\varphi_{\mathbf{Z}}(\mathbf{t}) & =\prod_{i=1}^{p} \exp \left(\frac{-t_{i}^{2}}{2}\right) \\
& =\exp \left(\sum_{i=1}^{p} \frac{-t_{i}^{2}}{2}\right) \\
& =\exp \left(\frac{-\mathbf{t}^{T} \mathbf{t}}{2}\right)
\end{aligned}
$$

Characteristic function iff

- For $\mu \in \mathbb{R}^{p}$ and $\Sigma=L L^{T}$ positive definite, define $\mathbf{Y}=L \mathbf{Z}+\mu$. We then have

$$
\begin{aligned}
\varphi_{\mathbf{Y}}(\mathbf{t}) & =\exp \left(i \mathbf{t}^{T} \mu\right) \varphi_{\mathbf{Z}}\left(L^{T} \mathbf{t}\right) \\
& =\exp \left(i \mathbf{t}^{T} \mu\right) \exp \left(\frac{-\left(L^{T} \mathbf{t}\right)^{T}\left(L^{T} \mathbf{t}\right)}{2}\right) \\
& =\exp \left(i \mathbf{t}^{T} \mu-\frac{\mathbf{t}^{T} \Sigma \mathbf{t}}{2}\right)
\end{aligned}
$$

Alternative characterization

A p-dimensional random vector \mathbf{Y} is said to have a multivariate normal distribution if and only if every linear combination of \mathbf{Y} has a univariate normal distribution. - Note: In particular, every component of \mathbf{Y} is also normally distributed.

Proof

This result follows from the Cramer-Wold theorem. Let $\mathbf{u} \in \mathbb{R}^{p}$. We have

$$
\begin{aligned}
\varphi_{\mathbf{u}^{T} \mathbf{Y}}(t) & =\varphi_{\mathbf{Y}}(t \mathbf{u}) \\
& =\exp \left(i t \mathbf{u}^{T} \mu-\frac{\mathbf{u}^{T} \Sigma \mathbf{u} t^{2}}{2}\right) .
\end{aligned}
$$

This is the characteristic function of a univariate normal variable with mean $\mathbf{u}^{T} \mu$ and variance $\mathbf{u}^{T} \Sigma \mathbf{u}$.

Proof if

Conversely, assume \mathbf{Y} has mean μ and Σ, and assume $\mathbf{u}^{T} \mathbf{Y}$ is normally distributed for all $\mathbf{u} \in \mathbb{R}^{p}$. In particular, we must have

$$
\varphi_{\mathbf{u}^{T} \mathbf{Y}}(t)=\exp \left(i t \mathbf{u}^{T} \mu-\frac{\mathbf{u}^{T} \Sigma \mathbf{u} t^{2}}{2}\right)
$$

Now, let's look at the characteristic function of \mathbf{Y} :

Proof ifi

$$
\begin{aligned}
\varphi_{\mathbf{Y}}(\mathbf{t}) & =E\left(\exp \left(i \mathbf{t}^{T} \mathbf{Y}\right)\right) \\
& =E\left(\exp \left(i\left(\mathbf{t}^{T} \mathbf{Y}\right)\right)\right) \\
& =\varphi_{\mathbf{t}^{T} \mathbf{Y}}(1) \\
& =\exp \left(i \mathbf{t}^{T} \mu-\frac{\mathbf{t}^{T} \Sigma \mathbf{t}}{2}\right) .
\end{aligned}
$$

This is the characteristic function we were looking for.

Counter-Example

- Let Y be a mixture of two multivariate normal distributions $\mathbf{Y}_{1}, \mathbf{Y}_{2}$ with mixing probability p.
- Assume that

$$
\mathbf{Y}_{i} \sim N_{p}\left(0,\left(1-\rho_{i}\right) I_{p}+\rho_{i} \mathbf{1 1}^{\mathbf{T}}\right)
$$

where 1 is a p-dimensional vector of 1 s .

- In other words, the diagonal elements are 1 , and the off-diagonal elements are ρ_{i}.

Counter-Example ii

- First, note that the characteristic function of a mixture distribution is a mixture of the characteristic functions:

$$
\varphi_{\mathbf{Y}}(\mathbf{t})=p \varphi_{\mathbf{Y}_{1}}(\mathbf{t})+(1-p) \varphi_{\mathbf{Y}_{2}}(\mathbf{t})
$$

- Therefore, unless $p=0,1$ or $\rho_{1}=\rho_{2}$, the random vector Y does not follow a normal distribution.
- But the components of a mixture are the mixture of each component.
- Therefore, all components of \mathbf{Y} are univariate standard normal variables.

Counter-Example iii

- In other words, even if all the margins are normally distributed, the joint distribution may not follow a multivariate normal.

Useful properties

- If $\mathbf{Y} \sim N_{p}(\mu, \Sigma), A$ is a $q \times p$ matrix, and $b \in \mathbb{R}^{q}$, then

$$
A \mathbf{Y}+b \sim N_{q}\left(A \mu+b, A \Sigma A^{T}\right)
$$

- If $\mathbf{Y} \sim N_{p}(\mu, \Sigma)$ then all subsets of \mathbf{Y} are normally distributed; that is, write
- $\mathbf{Y}=\binom{\mathbf{Y}_{1}}{\mathbf{Y}_{2}}, \mu=\binom{\mu_{1}}{\mu_{2}}$;
- $\Sigma=\left(\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right)$.
- Then $\mathbf{Y}_{1} \sim N_{r}\left(\mu_{1}, \Sigma_{11}\right)$ and $\mathbf{Y}_{2} \sim N_{p-r}\left(\mu_{2}, \Sigma_{22}\right)$.

Useful properties ii

- Assume the same partition as above. Then the following are equivalent:
- \mathbf{Y}_{1} and \mathbf{Y}_{2} are independent;
- $\Sigma_{12}=0$;
- $\operatorname{Cov}\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)=0$.

Exercise (J\&W 4.3)

Let $\left(Y_{1}, Y_{2}, Y_{3}\right) \sim N_{3}(\mu, \Sigma)$ with $\mu=(3,1,4)$ and

$$
\Sigma=\left(\begin{array}{ccc}
1 & -2 & 0 \\
-2 & 5 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Which of the following random variables are independent?
Explain.

1. Y_{1} and Y_{2}.
2. Y_{2} and Y_{3}.
3. $\left(Y_{1}, Y_{2}\right)$ and Y_{3}.
4. $0.5\left(Y_{1}+Y_{2}\right)$ and Y_{3}.
5. Y_{2} and $Y_{2}-\frac{5}{2} Y_{1}-Y_{3}$.

Conditional Normal Distributions i

- Theorem: Let $\mathbf{Y} \sim N_{p}(\mu, \Sigma)$, where

$$
\begin{aligned}
& \mathbf{Y}=\binom{\mathbf{Y}_{1}}{\mathbf{Y}_{2}}, \mu=\binom{\mu_{1}}{\mu_{2}} \\
& \Sigma \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
\end{aligned}
$$

- Then the conditional distribution of \mathbf{Y}_{1} given $\mathbf{Y}_{2}=\mathbf{y}_{2}$ is multivariate normal $N_{r}\left(\mu_{1 \mid 2}, \Sigma_{1 \mid 2}\right)$, where

$$
\begin{aligned}
& \text { - } \mu_{1 \mid 2}=\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(\mathbf{y}_{2}-\mu_{2}\right) \\
& \text { - } \Sigma_{1 \mid 2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
\end{aligned}
$$

Proof

Let B be a matrix of the same dimension as Σ_{12}. We will look at the following linear transformation of \mathbf{Y} :

$$
\left(\begin{array}{cc}
I & -B \\
0 & I
\end{array}\right) \mathbf{Y}=\binom{\mathbf{Y}_{1}-B \mathbf{Y}_{2}}{\mathbf{Y}_{2}}
$$

Using the properties of the mean, we have

$$
\left(\begin{array}{cc}
I & -B \\
0 & I
\end{array}\right) \mu=\binom{\mu_{1}-B \mu_{2}}{\mu_{2}}
$$

Proof if

Similarly, using the properties of the covariance, we have

$$
\begin{aligned}
& \left(\begin{array}{cc}
I & -B \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-B^{T} & I
\end{array}\right) \\
= & \left(\begin{array}{cc}
\Sigma_{11}-B \Sigma_{21}-\Sigma_{12} B^{T}+B \Sigma_{22} B^{T} & \Sigma_{12}-B \Sigma_{22} \\
\Sigma_{21}-\Sigma_{22} B^{T} & \Sigma_{22}
\end{array}\right) .
\end{aligned}
$$

Proof ifi

Recall that subsets of a multivariate normal variable are again multivariate normal:

$$
\begin{aligned}
\mathbf{Y}_{1}-B \mathbf{Y}_{2} & \sim N\left(\mu_{1}-B \mu_{2}, \Sigma_{11}-B \Sigma_{21}-\Sigma_{12} B^{T}+B \Sigma_{22} B^{T}\right), \\
\mathbf{Y}_{2} & \sim N\left(\mu_{2}, \Sigma_{22}\right) .
\end{aligned}
$$

If we take $B=\Sigma_{12} \Sigma_{22}^{-1}$, the two off-diagonal blocks of the covariance matrix above become 0 . This implies that $\mathbf{Y}_{1}-B \mathbf{Y}_{2}$ is independent of \mathbf{Y}_{2}.

Proof iv

Given $B=\Sigma_{12} \Sigma_{22}^{-1}$, we can deduce that

$$
\mathbf{Y}_{1}-\Sigma_{12} \Sigma_{22}^{-1} \mathbf{Y}_{2} \sim N\left(\mu_{1}-\Sigma_{12} \Sigma_{22}^{-1} \mu_{2}, \Sigma_{1 \mid 2}\right)
$$

where

$$
\Sigma_{1 \mid 2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
$$

Using the fact that $\mathbf{Y}_{1}-\Sigma_{12} \Sigma_{22}^{-1} \mathbf{Y}_{2}$ and \mathbf{Y}_{2} are independent, we can conclude that

$$
\mathbf{Y}_{1}-\Sigma_{12} \Sigma_{22}^{-1} \mathbf{Y}_{2}=\mathbf{Y}_{1}-\Sigma_{12} \Sigma_{22}^{-1} \mathbf{y}_{2} \mid \mathbf{Y}_{2}=\mathbf{y}_{2}
$$

Proof v

Finally, by adding $\Sigma_{12} \Sigma_{22}^{-1} \mathbf{y}_{2}$ to the right-hand side, we get

$$
\mathbf{Y}_{1} \mid \mathbf{Y}_{2}=\mathbf{y}_{2} \sim N\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(\mathbf{y}_{2}-\mu_{2}\right), \Sigma_{1 \mid 2}\right) .
$$

Conditional Normal Distributions if

- Theorem: Let $\mathbf{Y}_{2} \sim N_{p-r}\left(\mu_{2}, \Sigma_{22}\right)$ and assume that \mathbf{Y}_{1} given $\mathbf{Y}_{2}=\mathbf{y}_{2}$ is multivariate normal $N_{r}\left(A \mathbf{y}_{2}+b, \Omega\right)$, where Ω does not depend on \mathbf{y}_{2}. Then

$$
\begin{aligned}
\mathbf{Y} & =\binom{\mathbf{Y}_{1}}{\mathbf{Y}_{2}} \sim N_{p}(\mu, \Sigma), \text { where } \\
\text { - } \mu & =\binom{A \mu_{2}+b}{\mu_{2}} ; \\
\text { - } \Sigma & =\left(\begin{array}{cc}
\Omega+A \Sigma_{22} A^{T} & A \Sigma_{22} \\
\Sigma_{22} A^{T} & \Sigma_{22}
\end{array}\right) .
\end{aligned}
$$

- Proof: Exercise (e.g. compute joint density).

Exercise

- Let $\mathbf{Y}_{2} \sim N_{1}(0,1)$ and assume

$$
\mathbf{Y}_{1} \left\lvert\, \mathbf{Y}_{2}=y_{2} \sim N_{2}\left(\binom{y_{2}+1}{2 y_{2}}, I_{2}\right)\right.
$$

Find the joint distribution of $\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)$.

Another important result

- Let $\mathbf{Y} \sim N_{p}(\mu, \Sigma)$, and let $\Sigma=L L^{T}$ be the Cholesky decomposition of Σ.
- We know that $\mathbf{Z}=L^{-1}(\mathbf{Y}-\mu)$ is normally distributed, with mean 0 and covariance matrix

$$
\operatorname{Cov}(\mathbf{Z})=L^{-1} \Sigma\left(L^{-1}\right)^{T}=I_{p} .
$$

- Therefore $(\mathbf{Y}-\mu)^{T} \Sigma^{-1}(\mathbf{Y}-\mu)$ is the sum of squared standard normal random variables.
- In other words, $(\mathbf{Y}-\mu)^{T} \Sigma^{-1}(\mathbf{Y}-\mu) \sim \chi^{2}(p)$.
- This can be seen as a generalization of the univariate result $\left(\frac{X-\mu}{\sigma}\right)^{2} \sim \chi^{2}(1)$.

Another important result if

- From this, we get a result about the probability that a multivariate normal falls within an ellipse:

$$
P\left((\mathbf{Y}-\mu)^{T} \Sigma^{-1}(\mathbf{Y}-\mu) \leq \chi^{2}(\alpha ; p)\right)=1-\alpha .
$$

- We can use this to construct a confidence region around the sample mean.

Application i

- We can use the result above to construct a graphical test of multivariate normality.
- Note: The chi-square distribution does not yield a good approximation for large p. A more accurate graphical test can be constructed using a beta distribution.
- Procedure: Given a random sample $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$ of p-dimensional random vectors:
- Compute $D_{i}^{2}=\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)^{T} S^{-1}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)$.
- Compare the (observed) quantiles of the $D_{i}^{2} \mathrm{~s}$ with the (theoretical) quantiles of a $\chi^{2}(p)$ distribution.

Application if

\# Ramus data, Timm (2002)
main_page <- "https://maxturgeon.ca/w20-stat7200/"
ramus <- read.csv(paste0(main_page, "Ramus.csv")) head(ramus, $n=5$)
\#\# Age8 Age8.5 Age9 Age9.5 ID
\#\# $147.8 \quad 48.849 .0 \quad 49.7 \quad 1$
\#\# $246.4 \quad 47.347 .7 \quad 48.4 \quad 2$
\#\# $346.3 \quad 46.847 .8 \quad 48.5 \quad 3$
\#\# $445.1 \quad 45.346 .1 \quad 47.2 \quad 4$
\#\# $547.6 \quad 48.548 .9 \quad 49.3 \quad 5$

Application iif

```
var_names <- c("Age8", "Age8.5",
    "Age9", "Age9.5")
par(mfrow = c(2, 2))
for (var in var_names) {
    qqnorm(ramus[, var], main = var)
    qqline(ramus[, var])
}
```


Application iv

Application \mathbf{v}

ramus <- ramus[,var_names]
sigma_hat <- cov(ramus)
ramus_cent <- scale(ramus, center = TRUE, scale = FALSE)

D_vect <- apply(ramus_cent, 1, function(row) \{ t(row) \%*\% solve(sigma_hat) \%*\% row
\})

Application vi

qqplot(qchisq(ppoints(D_vect), df = 4),
D_vect, xlab = "Theoretical Quantiles")
qqline(D_vect, distribution $=$ function(p) \{ qchisq(p, df = 4)
\})

Application vii

Estimation

Sufficient Statistics i

- We saw in the previous lecture that the multivariate normal distribution is completely determined by its mean vector $\mu \in \mathbb{R}^{p}$ and its covariance matrix Σ.
- Therefore, given a sample $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n} \sim N_{p}(\mu, \Sigma)$ $(n>p)$, we only need to estimate (μ, Σ).
- Obvious candidates: sample mean $\overline{\mathbf{Y}}$ and sample covariance S_{n}.

Sufficient Statistics if

- Write down the likelihood:

$$
\begin{aligned}
L & =\prod_{i=1}^{n}\left(\frac{1}{\sqrt{(2 \pi)^{p}|\Sigma|}} \exp \left(-\frac{1}{2}\left(\mathbf{Y}_{i}-\mu\right)^{T} \Sigma^{-1}\left(\mathbf{Y}_{i}-\mu\right)\right)\right) \\
& =\frac{1}{(2 \pi)^{n p / 2}|\Sigma|^{n / 2}} \exp \left(-\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\mu\right)^{T} \Sigma^{-1}\left(\mathbf{Y}_{i}-\mu\right)\right)
\end{aligned}
$$

- If we take the (natural) logarithm of L and drop any term that does not depend on (μ, Σ), we get

$$
\ell=-\frac{n}{2} \log |\Sigma|-\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\mu\right)^{T} \Sigma^{-1}\left(\mathbf{Y}_{i}-\mu\right)
$$

Sufficient Statistics iif

- If we can re-express the second summand in terms of $\overline{\mathbf{Y}}$ and S_{n}, by the Fisher-Neyman factorization theorem, we will then know that $\left(\overline{\mathbf{Y}}, S_{n}\right)$ is jointly sufficient for (μ, Σ).
- First, we have

Sufficient Statistics iv

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\mu\right)\left(\mathbf{Y}_{i}-\mu\right)^{T}=\sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}+\overline{\mathbf{Y}}-\mu\right)\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}+\overline{\mathbf{Y}}-\mu\right)^{T} \\
& =\sum_{i=1}^{n}\left(\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)^{T}+\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)(\overline{\mathbf{Y}}-\mu)^{T}\right. \\
& \left.\quad+(\overline{\mathbf{Y}}-\mu)\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)^{T}+(\overline{\mathbf{Y}}-\mu)(\overline{\mathbf{Y}}-\mu)^{T}\right) \\
& =\sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)^{T}+n(\overline{\mathbf{Y}}-\mu)(\overline{\mathbf{Y}}-\mu)^{T} \\
& =(n-1) S_{n}+n(\overline{\mathbf{Y}}-\mu)(\overline{\mathbf{Y}}-\mu)^{T} .
\end{aligned}
$$

Sufficient Statistics

- Next, using the fact that $\operatorname{tr}(A B C)=\operatorname{tr}(B C A)$, we have

Sufficient Statistics vi

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\mu\right)^{T} \Sigma^{-1}\left(\mathbf{Y}_{i}-\mu\right)= \operatorname{tr}\left(\sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\mu\right)^{T} \Sigma^{-1}\left(\mathbf{Y}_{i}-\mu\right)\right) \\
&= \operatorname{tr}\left(\sum_{i=1}^{n} \Sigma^{-1}\left(\mathbf{Y}_{i}-\mu\right)\left(\mathbf{Y}_{i}-\mu\right)^{T}\right) \\
&= \operatorname{tr}\left(\Sigma^{-1} \sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\mu\right)\left(\mathbf{Y}_{i}-\mu\right)^{T}\right) \\
&=(n-1) \operatorname{tr}\left(\Sigma^{-1} S_{n}\right) \\
& \quad+n \operatorname{tr}\left(\Sigma^{-1}(\overline{\mathbf{Y}}-\mu)(\overline{\mathbf{Y}}-\mu)^{T}\right) \\
&=(n-1) \operatorname{tr}\left(\Sigma^{-1} S_{n}\right) \\
&+n(\overline{\mathbf{Y}}-\mu)^{T} \Sigma^{-1}(\overline{\mathbf{Y}}-\mu) .
\end{aligned}
$$

Maximum Likelihood Estimation

- Going back to the log-likelihood, we get:

$$
\ell=-\frac{n}{2} \log |\Sigma|-\frac{(n-1)}{2} \operatorname{tr}\left(\Sigma^{-1} S_{n}\right)-\frac{n}{2}(\overline{\mathbf{Y}}-\mu)^{T} \Sigma^{-1}(\overline{\mathbf{Y}}-\mu)
$$

- First, fix Σ and maximise over μ. The only term that depends on μ is

$$
-\frac{n}{2}(\overline{\mathbf{Y}}-\mu)^{T} \Sigma^{-1}(\overline{\mathbf{Y}}-\mu)
$$

- We can maximise this term by minimising

$$
(\overline{\mathbf{Y}}-\mu)^{T} \Sigma^{-1}(\overline{\mathbf{Y}}-\mu)
$$

Maximum Likelihood Estimation if

- But since Σ^{-1} is positive definite, we have

$$
(\overline{\mathbf{Y}}-\mu)^{T} \Sigma^{-1}(\overline{\mathbf{Y}}-\mu) \geq 0
$$

with equality if and only if $\mu=\overline{\mathbf{Y}}$.

- In other words, the log-likelihood is maximised at

$$
\hat{\mu}=\overline{\mathbf{Y}}
$$

- Now, we can turn our attention to Σ. We want to maximise

$$
\ell=-\frac{n}{2} \log |\Sigma|-\frac{(n-1)}{2} \operatorname{tr}\left(\Sigma^{-1} S_{n}\right)-\frac{n}{2}(\overline{\mathbf{Y}}-\mu)^{T} \Sigma^{-1}(\overline{\mathbf{Y}}-\mu)
$$

Maximum Likelihood Estimation ifi

- At $\mu=\overline{\mathbf{Y}}$, it reduces to

$$
-\frac{n}{2} \log |\Sigma|-\frac{(n-1)}{2} \operatorname{tr}\left(\Sigma^{-1} S_{n}\right)
$$

- Write $V=(n-1) S_{n}$. We then have

$$
-\frac{n}{2} \log |\Sigma|-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} V\right)
$$

- Maximising this quantity is equivalent to minimising

$$
\log |\Sigma|+\frac{1}{n} \operatorname{tr}\left(\Sigma^{-1} V\right)
$$

and by adding the constant $\log \left|n V^{-1}\right|$, we get

$$
\log |\Sigma|+\frac{1}{n} \operatorname{tr}\left(\Sigma^{-1} V\right)+\log \left|n V^{-1}\right|=\log \left|n V^{-1} \Sigma\right|+\operatorname{tr}\left(n^{-1} \Sigma^{-1} V\right)
$$

Maximum Likelihood Estimation iv

- Set $T=n V^{-1} \Sigma$. Our maximum likelihood problem now reduces to minimising

$$
\log |T|+\operatorname{tr}\left(T^{-1}\right)
$$

- Let $\lambda_{1}, \ldots, \lambda_{p}$ be the (positive) eigenvalues of T. We now have

$$
\begin{aligned}
\log |T|+\operatorname{tr}\left(T^{-1}\right) & =\log \left(\prod_{i=1}^{p} \lambda_{i}\right)+\sum_{i=1}^{p} \lambda_{i}^{-1} \\
& =\sum_{i=1}^{p} \log \lambda_{i}+\lambda_{i}^{-1}
\end{aligned}
$$

Maximum Likelihood Estimation

- Each summand can be minimised individually, and the minimum occurs at $\lambda_{i}=1$. In other words, the (overall) minimum is when $T=I_{p}$, which is equivalent to

$$
\Sigma=\frac{n-1}{n} S_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)^{T}
$$

- In other words: $\left(\overline{\mathbf{Y}}, \frac{n-1}{n} S_{n}\right)$ are the maximum likelihood estimators for (μ, Σ).

Maximum Likelihood Estimators

- Since the multivariate normal density is "well-behaved", we can deduce the usual properties:
- Consistency: $(\overline{\mathbf{Y}}, \hat{\Sigma})$ converges in probability to (μ, Σ).
- Efficiency: Asymptotically, the covariance of $(\overline{\mathbf{Y}}, \hat{\Sigma})$ achieves the Cramér-Rao lower bound.
- Invariance: For any transformation $(g(\mu), G(\Sigma))$ of (μ, Σ), its MLE is $(g(\overline{\mathbf{Y}}), G(\hat{\Sigma}))$.

Visualizing the likelihood i

```
library(mvtnorm)
set.seed(123)
n <- 50; p <- 2
mu <- c(1, 2)
Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = p)
Y <- rmvnorm(n, mean = mu, sigma = Sigma)
```


Visualizing the likelihood if

```
loglik <- function(mu, sigma, data = Y) {
    # Compute quantities
    y_bar <- colMeans(Y)
    quad_form <- t(y_bar - mu) %*% solve(sigma) %*%
        (y_bar - mu)
    -0.5*n*log(det(sigma)) -
    0.5*(n - 1)*sum(diag(solve(sigma) %*% cov(Y))) -
    0.5*n*drop(quad_form)
```

\}

Visualizing the likelihood ifi

$$
\begin{array}{r}
\text { grid_xy <- expand.grid(seq(0, 2, length.out }=32), \\
\operatorname{seq}(0,4, \text { length.out }=32))
\end{array}
$$

head(grid_xy, n = 5)

```
## Var1 Var2
## 1 0.00000000 0
## 2 0.06451613 0
## 3 0.12903226 0
## 4 0.19354839 0
## 5 0.25806452 0
```


Visualizing the likelihood iv

```
contours <- purrr::map_df(seq_len(nrow(grid_xy)),
    function(i) {
    # Where we will evaluate loglik
    mu_obs <- as.numeric(grid_xy[i,])
    # Evaluate at the pop covariance
    z <- loglik(mu_obs, sigma = Sigma)
    # Output data.frame
    data.frame(x = mu_obs[1],
    y = mu_obs[2],
    z = z)
```

\})

Visualizing the likelihood

library(tidyverse)
library (ggrepel)
\# Create df with pop and sample means
data_means <- data.frame(x = c(mu[1], mean(Y[,1])), $y=c(m u[2], \operatorname{mean}(Y[, 2]))$, label = c("Pop.", "Sample"))

Visualizing the likelihood vi

```
ggplot(contours, aes(x, y)) +
    geom_contour(aes(z = z)) +
    geom_point(data = data_means) +
    geom_label_repel(data = data_means,
                        aes(label = label))
```


Visualizing the likelihood vif

Visualizing the likelihood viif

library(scatterplot3d)
with(contours, scatterplot3d(x, y, z))

Visualizing the likelihood ix

Sampling Distributions

- Recall the univariate case:
- $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$;
- $\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$;
- \bar{X} and s^{2} are independent.
- In the multivariate case, we have similar results:
- $\overline{\mathbf{Y}} \sim N_{p}\left(\mu, \frac{1}{n} \Sigma\right)$;
- $(n-1) S_{n}=n \hat{\Sigma}$ follows a Wishart distribution with $n-1$ degrees of freedom;
- $\overline{\mathbf{Y}}$ and S_{n} are independent.
- We will prove the last two properties later.

Bayesian analysis

- In Frequentist statistics, parameters are fixed quantities that we are trying to estimate and about which we want to make inference.
- In Bayesian statistics, parameters are given a distribution that models the uncertainty/knowledge we have about the underlying population quantity.
- And as we collect data, our knowledge changes, and so does the distribution.

Bayesian analysis if

- Some vocabulary:
- Prior distribution: Distribution of the parameters before data collection/analysis. It represents our current knowledge.
- Posterior distribution: Distribution of the parameters after data collection/analysis. It represents our updated knowledge.
- Bayesian statistics is based on the following updating rule:

Posterior distribution \propto Prior distribution \times Likelihood.

Bayesian analysis ifi

- We will look at the posterior distribution of the multivariate normal mean μ, assuming Σ is known, when the prior is also normally distributed.
- Let's start with a single p-dimensional observation $\mathbf{Y} \sim N(\mu, \Sigma)$. The log-likelihood (keeping only terms depending on μ) is equal to

$$
\log L(\mathbf{Y} \mid \mu) \propto-\frac{1}{2}(\mathbf{Y}-\mu)^{T} \Sigma^{-1}(\mathbf{Y}-\mu)
$$

- Let $p(\mu)=N\left(\mu_{0}, \Sigma_{0}\right)$ be the prior distribution for μ. On the log scale, we have

$$
\log p(\mu) \propto-\frac{1}{2}\left(\mu-\mu_{0}\right)^{T} \Sigma_{0}^{-1}\left(\mu-\mu_{0}\right)
$$

Bayesian analysis iv

- Using the updating rule, we have

$$
\log p(\mu \mid \mathbf{Y}) \propto-\frac{1}{2}(\mathbf{Y}-\mu)^{T} \Sigma^{-1}(\mathbf{Y}-\mu)-\frac{1}{2}\left(\mu-\mu_{0}\right)^{T} \Sigma_{0}^{-1}\left(\mu-\mu_{0}\right)
$$

- If we expand both quadratic forms and only keep terms that depend on μ, we get

$$
\begin{gathered}
\log p(\mu \mid \mathbf{Y}) \propto-\frac{1}{2}\left(\mu^{T} \Omega^{-1} \mu-\left(\mathbf{Y}^{T} \Sigma^{-1}+\mu_{0}^{T} \Sigma_{0}^{-1}\right) \mu\right. \\
\left.-\mu^{T}\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right)\right)
\end{gathered}
$$

where $\Omega^{-1}=\Sigma^{-1}+\Sigma_{0}^{-1}$.

Bayesian analysis

- Since Ω^{-1} is the sum of two positive definite matrices, it is itself positive definite.
- Using the Cholesky decomposition, we can write $\Omega^{-1}=U^{T} U$ with U triangular and invertible. We therefore have

$$
\begin{gathered}
\log p(\mu \mid \mathbf{Y}) \propto-\frac{1}{2}\left(\mu^{T} U^{T} U \mu-\left(\mathbf{Y}^{T} \Sigma^{-1}+\mu_{0}^{T} \Sigma_{0}^{-1}\right) U^{-1} U \mu\right. \\
\left.-\mu^{T}\left(U^{T}\right)\left(U^{T}\right)^{-1}\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right)\right) \\
\propto-\frac{1}{2}\left((U \mu)^{T}(U \mu)-\left(\mathbf{Y}^{T} \Sigma^{-1}+\mu_{0}^{T} \Sigma_{0}^{-1}\right) U^{-1}(U \mu)\right. \\
\left.\quad-(U \mu)^{T}\left(U^{T}\right)^{-1}\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right)\right)
\end{gathered}
$$

Bayesian analysis vi

- Set $\nu=\left(U^{T}\right)^{-1}\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right)$ and complete the square:

$$
\begin{aligned}
\log p(\mu \mid \mathbf{Y}) & \propto-\frac{1}{2}\left((U \mu)^{T}(U \mu)-\nu^{T}(U \mu)-(U \mu)^{T} \nu\right) \\
& \propto-\frac{1}{2}\left((U \mu-\nu)^{T}(U \mu-\nu)-\nu^{T} \nu\right) \\
& \propto-\frac{1}{2}\left(\left(\mu-U^{-1} \nu\right)^{T} U^{T} U\left(\mu-U^{-1} \nu\right)-\nu^{T} \nu\right) \\
& \propto-\frac{1}{2}\left(\left(\mu-U^{-1} \nu\right)^{T} \Omega^{-1}\left(\mu-U^{-1} \nu\right)-\nu^{T} \nu\right)
\end{aligned}
$$

Bayesian analysis vii

- Now, note that

$$
\begin{aligned}
U^{-1} \nu & =U^{-1}\left(U^{T}\right)^{-1}\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right) \\
& =\left(U^{T} U\right)^{-1}\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right) \\
& =\Omega\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right) \\
& =\left(\Sigma^{-1}+\Sigma_{0}^{-1}\right)^{-1}\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right)
\end{aligned}
$$

Bayesian analysis viii

- Moreover, we have

$$
\begin{aligned}
\nu^{T} \nu & =\left(\left(U^{T}\right)^{-1}\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right)\right)^{T}\left(\left(U^{T}\right)^{-1}\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right)\right) \\
& =\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right)^{T}(U)^{-1}\left(U^{T}\right)^{-1}\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right) \\
& =\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right)^{T}\left(U^{T} U\right)^{-1}\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right) \\
& =\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right)^{T} \Omega\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right) .
\end{aligned}
$$

Bayesian analysis ix

- In other words, $\nu^{T} \nu$ does not depend on μ, and therefore we can drop it from our expression above. The conclusion is that the log-posterior distribution is proportional to

$$
-\frac{1}{2}\left(\left(\mu-\Omega\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right)\right)^{T} \Omega^{-1}\left(\mu-\Omega\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right)\right)\right)
$$

- As a function of μ, this is the kernel of a multivariate normal density:

$$
p(\mu \mid \mathbf{Y}) \sim N\left(\Omega\left(\Sigma^{-1} \mathbf{Y}+\Sigma_{0}^{-1} \mu_{0}\right), \Omega\right)
$$

Bayesian analysis

- Now, assume we have a random sample $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$. We know that

$$
\overline{\mathbf{Y}} \sim N\left(\mu, n^{-1} \Sigma\right)
$$

- Therefore, the posterior distribution of μ given the random sample is

$$
p\left(\mu \mid \mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}\right) \sim N\left(\Omega\left(n \Sigma^{-1} \overline{\mathbf{Y}}+\Sigma_{0}^{-1} \mu_{0}\right), \Omega\right)
$$

where $\Omega=\left(n \Sigma^{-1}+\Sigma_{0}^{-1}\right)^{-1}$.

A few comments

- The inverse covariance matrix $n \Sigma^{-1}+\Sigma_{0}^{-1}$ is also called the precision matrix.
- We can see that the larger the sample size n, the less significant the prior precision Σ_{0}^{-1} becomes.
- The posterior mean is a (scaled) linear combination of the sample mean and prior mean.
- Again, as the sample size increases, the less significant the prior mean becomes.

