Multivariate Random Variables

Max Turgeon

STAT 7200-Multivariate Statistics

Joint distributions

- Let X and Y be two random variables.
- The joint distribution function of X and Y is

$$
F(x, y)=P(X \leq x, Y \leq y)
$$

- More generally, let Y_{1}, \ldots, Y_{p} be p random variables.

Their joint distribution function is

$$
F\left(y_{1}, \ldots, y_{p}\right)=P\left(Y_{1} \leq y_{1}, \ldots, Y_{p} \leq y_{p}\right)
$$

Joint densities

- If F is absolutely continuous almost everywhere, there exists a function f called the density such that

$$
F\left(y_{1}, \ldots, y_{p}\right)=\int_{-\infty}^{y_{1}} \cdots \int_{-\infty}^{y_{p}} f\left(u_{1}, \ldots, u_{p}\right) d u_{1} \cdots d u_{p}
$$

- The joint moments are defined as follows:

$$
\begin{aligned}
& E\left(Y_{1}^{n_{1}} \cdots Y_{p}^{n_{p}}\right)= \\
& \quad \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} u_{1}^{n_{1}} \cdots u_{p}^{n_{p}} f\left(u_{1}, \ldots, u_{p}\right) d u_{1} \cdots d u_{p}
\end{aligned}
$$

- Exercise: Show that this is consistent with the univariate definition of $E\left(Y_{1}^{n_{1}}\right)$, i.e. $n_{2}=\cdots=n_{p}=0$.

Marginal distributions

- From the joint distribution function, we can recover the marginal distributions:

$$
F_{i}(x)=\lim _{\substack{y_{j} \rightarrow \infty \\ j \neq i}} F\left(y_{1}, \ldots, y_{p}\right) .
$$

- More generally, we can find the joint distribution of a subset of variables by sending the other ones to infinity:

$$
F\left(y_{1}, \ldots, y_{r}\right)=\lim _{\substack{y_{j} \rightarrow \infty \\ j>r}} F\left(y_{1}, \ldots, y_{p}\right), \quad r<p .
$$

Marginal distributions ii

- Similarly, from the joint density function, we can recover the marginal densities:

$$
f_{i}(x)=\int_{-\infty}^{\infty} f\left(u_{1}, \ldots, u_{p}\right) d u_{1} \cdots \widehat{d u_{i}} \cdots d u_{p} .
$$

- In other words, we are integrating out the other variables.

Example i

- Let $R=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{p}, b_{p}\right] \subseteq \mathbb{R}^{p}$ be a hyper-rectangle, with $a_{i}<b_{i}$, for all i.
- If $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{p}\right)$ is uniformly distributed on R, then its density is given by

$$
f\left(y_{1}, \ldots, y_{p}\right)= \begin{cases}\prod_{i=1}^{p} \frac{1}{b_{i}-a_{i}} & \left(y_{1}, \ldots, y_{p}\right) \in R \\ 0 & \text { else }\end{cases}
$$

- For convenience, we can also use the indicator function:

$$
f\left(y_{1}, \ldots, y_{p}\right)=\prod_{i=1}^{p} \frac{I_{\left[a_{i}, b_{i}\right]}\left(y_{i}\right)}{b_{i}-a_{i}}
$$

Example if

- We then have

$$
\begin{aligned}
F\left(y_{1}, \ldots, y_{p}\right) & =\int_{-\infty}^{y_{1}} \cdots \int_{-\infty}^{y_{p}} f\left(u_{1}, \ldots, u_{p}\right) d u_{1} \cdots d u_{p} \\
& =\prod_{i=1}^{p}\left(\frac{y_{i}-a_{i}}{b_{i}-a_{i}} I_{\left[a_{i}, b_{i}\right]}\left(y_{i}\right)+I_{\left[b_{i}, \infty\right)}\left(y_{i}\right)\right)
\end{aligned}
$$

- Finally, note that we recover the univariate uniform distribution by sending all components but one to infinity:

$$
F_{i}(x)=\lim _{\substack{y_{j} \rightarrow \infty \\ j \neq i}} F\left(y_{1}, \ldots, y_{p}\right)=\frac{x-a_{i}}{b_{i}-a_{i}} I_{\left[a_{i}, b_{i}\right]}(x)+I_{\left[b_{i}, \infty\right)}(x)
$$

Introduction to Copulas i

- Copula theory provides a general and powerful way to model general multivariate distributions.
- The main idea is that we can decouple (and recouple) the marginal distributions and the dependency structure between each component.
- Copulas capture this dependency structure.
- Sklar's theorem tells us about how to combine the two.

Introduction to Copulas if

Definition

A p-dimensional copula is a function $C:[0,1]^{p} \rightarrow[0,1]$ that arises as the distribuction function (CDF) of a random vector whose marginal distributions are all uniform on the interval $[0,1]$.

In particular, we have

$$
C\left(1, \ldots, u_{i}, \ldots, 1\right)=u_{i}, \quad u_{i} \in[0,1] .
$$

Introduction to Copulas iif

Probability integral transform
If Y is a continuous (univariate) random variable with CDF F_{Y}, then

$$
F_{Y}(Y) \sim U(0,1) .
$$

Proof

$$
\begin{aligned}
P\left(F_{Y}(Y) \leq x\right) & =P\left(Y \leq F_{Y}^{-1}(x)\right) \\
& =F_{Y}\left(F_{Y}^{-1}(x)\right) \\
& =x .
\end{aligned}
$$

Sklar's Theorem i

- Using the Probability integral transform, we can prove one part of Sklar's theorem.
- More precisely, let $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{p}\right)$ be a continuous random vector with CDF F, and let F_{1}, \ldots, F_{p} be the CDFs of the marginal distributions.
- We know that $F_{1}\left(Y_{1}\right), \ldots, F_{p}\left(Y_{p}\right)$ are uniformly distributed on $[0,1]$, and therefore the CDF of their joint distribution is a copula C.

Sklar's Theorem ii

$$
\begin{aligned}
C\left(u_{1}, \ldots, u_{p}\right) & =P\left(F_{1}\left(Y_{1}\right) \leq u_{1}, \ldots, F_{p}\left(Y_{p}\right) \leq u_{p}\right) \\
& =P\left(Y_{1} \leq F_{1}^{-1}\left(u_{1}\right), \ldots, Y_{p} \leq F_{p}^{-1}\left(u_{p}\right)\right) \\
& =F\left(F_{1}^{-1}\left(u_{1}\right), \ldots, F_{p}^{-1}\left(u_{p}\right)\right) .
\end{aligned}
$$

- By taking $u_{i}=F_{i}\left(y_{i}\right)$, we get

$$
F\left(y_{1}, \ldots, y_{p}\right)=C\left(F_{1}\left(y_{1}\right), \ldots, F_{p}\left(y_{p}\right)\right) .
$$

Sklar's Theorem iif

Theorem

Let $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{p}\right)$ be any random vector with CDF F, and let F_{1}, \ldots, F_{p} be the CDFs of the marginal distributions.
There exist a copula C such that

$$
\begin{equation*}
F\left(y_{1}, \ldots, y_{p}\right)=C\left(F_{1}\left(y_{1}\right), \ldots, F_{p}\left(y_{p}\right)\right) \tag{1}
\end{equation*}
$$

If the marginal distributions are absolutely continuous, then C is unique.

Conversely, given a copula C and univariate CDFs F_{1}, \ldots, F_{p}, then Equation 1 defines a valid CDF for a p-dimensional random vector.

Examples

- Gaussian copulas: Let Φ be the CDF of the standard univariate normal distribution, and let Φ_{Σ} be the CDF of multivariate normal distribution with mean 0 and covariance matrix Σ. The Gaussian copula C_{G} is defined as

$$
C_{G}\left(u_{1}, \ldots, u_{p}\right)=\Phi_{\Sigma}\left(\Phi^{-1}\left(u_{1}\right), \ldots, \Phi^{-1}\left(u_{p}\right)\right)
$$

Examples if

```
library(copula)
# Gaussian copula where correlation is 0.5
gaus_copula <- normalCopula(0.5, dim = 2)
sample_copula1 <- rCopula(1000, gaus_copula)
plot(sample_copula1)
```


Examples ifi

Examples iv

> \# Compare with independent copula, \# i.e. two independent uniform variables. gaus_copula <- normalCopula(0, dim = 2)
> sample_copula2 <- rCopula(1000, gaus_copula)
> plot(sample_copula2)

Examples

Examples vi

Corr. 0.5

Independent

Examples vii

For a properly chosen θ :

Name	$C(u, v)$
Ali-Mikhail-Haq	$\frac{u v}{1-\theta(1-u)(1-v)}$
Clayton	$\max \left(\left(u^{-\theta}+v^{-\theta}-1\right)^{1 / \theta}, 0\right)$
Independence	$u v$

Examples viii

```
\# Clayton copula with theta \(=0.5\)
clay_copula <- claytonCopula(param = 0.5)
sample_copula1 <- rCopula(1000, clay_copula)
plot(sample_copula1)
```


Examples ix

Examples

Conditional distributions

- Let f_{1}, f_{2} be the densities of random variables Y_{1}, Y_{2}, respectively. Let f be the joint density.
- The conditional density of Y_{1} given Y_{2} is defined as

$$
f\left(y_{1} \mid y_{2}\right):=\frac{f\left(y_{1}, y_{2}\right)}{f_{2}\left(y_{2}\right)}
$$

whenever $f_{2}\left(y_{2}\right) \neq 0$ (otherwise it is equal to zero).

- Similarly, we can define the conditional density in $p>2$ variables, and we can also define a conditional density for Y_{1}, \ldots, Y_{r} given Y_{r+1}, \ldots, Y_{p}.

Expectations

- Let $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{p}\right)$ be a random vector.
- Its expectation is defined entry-wise:

$$
E(\mathbf{Y})=\left(E\left(Y_{1}\right), \ldots, E\left(Y_{p}\right)\right) .
$$

- Observation: The dependence structure has no impact on the expectation.

Covariance and Correlation i

- The multivariate generalization of the variance is the covariance matrix. It is defined as

$$
\operatorname{Cov}(\mathbf{Y})=E\left((\mathbf{Y}-\mu)(\mathbf{Y}-\mu)^{T}\right)
$$

where $\mu=E(\mathbf{Y})$.

- Exercise: The (i, j)-th entry of $\operatorname{Cov}(\mathbf{Y})$ is equal to

$$
\operatorname{Cov}\left(Y_{i}, Y_{j}\right) .
$$

Covariance and Correlation if

- Recall that we obtain the correlation from the covariance by dividing by the square root of the variances.
- Let V be the diagonal matrix whose i-th entry is $\operatorname{Var}\left(Y_{i}\right)$.
- In other words, V and $\operatorname{Cov}(\mathbf{Y})$ have the same diagonal.
- Then we define the correlation matrix as follows:

$$
\operatorname{Corr}(\mathbf{Y})=V^{-1 / 2} \operatorname{Cov}(\mathbf{Y}) V^{-1 / 2}
$$

- Exercise: The (i, j)-th entry of $\operatorname{Corr}(\mathbf{Y})$ is equal to

$$
\operatorname{Corr}\left(Y_{i}, Y_{j}\right)
$$

Example i

- Assume that

$$
\operatorname{Cov}(\mathbf{Y})=\left(\begin{array}{ccc}
4 & 1 & 2 \\
1 & 9 & -3 \\
2 & -3 & 25
\end{array}\right)
$$

- Then we know that

$$
V=\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 25
\end{array}\right)
$$

Example if

- Therefore, we can write

$$
V^{-1 / 2}=\left(\begin{array}{ccc}
0.5 & 0 & 0 \\
0 & 0.33 & 0 \\
0 & 0 & 0.2
\end{array}\right)
$$

- We can now compute the correlation matrix:

Example ifi

$$
\begin{aligned}
\operatorname{Corr}(\mathbf{Y}) & =\left(\begin{array}{ccc}
0.5 & 0 & 0 \\
0 & 0.33 & 0 \\
0 & 0 & 0.2
\end{array}\right)\left(\begin{array}{ccc}
4 & 1 & 2 \\
1 & 9 & -3 \\
2 & -3 & 25
\end{array}\right)\left(\begin{array}{ccc}
0.5 & 0 & 0 \\
0 & 0.33 & 0 \\
0 & 0 & 0.2
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0.17 & 0.2 \\
0.17 & 1 & -0.2 \\
0.2 & -0.2 & 1
\end{array}\right) .
\end{aligned}
$$

Measures of Overall Variability

- In the univariate case, the variance is a scalar measure of spread.
- In the multivariate case, the covariance is a matrix.
- No easy way to compare two distributions.
- For this reason, we have other notions of overall variability:

1. Generalized Variance: This is defined as the determinant of the covariance matrix.

$$
G V(\mathbf{Y})=\operatorname{det}(\operatorname{Cov}(\mathbf{Y}))
$$

2. Total Variance: This is defined as the trace of the covariance matrix.

$$
T V(\mathbf{Y})=\operatorname{tr}(\operatorname{Cov}(\mathbf{Y}))
$$

Examples

```
A <- matrix(c(5, 4, 4, 5), ncol = 2)
results <- eigen(A, symmetric = TRUE,
                                    only.values = TRUE)
c("GV" = prod(results$values),
    "TV" = sum(results$values))
```

\#\# GV TV
\#\# 910

Examples if

\# Compare this with the following
B <- matrix $(\mathrm{c}(5,-4,-4,5)$, ncol $=2$)
\# $\operatorname{GV}(A)=9 ; T V(A)=10$
$c(" G V ")=\operatorname{det}(B)$,
"TV" $=\operatorname{sum}(\operatorname{diag}(B)))$
\#\# GV TV
\#\# 910

Measures of Overall Variability (cont'd)

- As we can see, we do lose some information:
- In matrix B, we saw that the two variables are negatively correlated, and yet we get the same values
- But $G V$ captures some information on dependence that TV does not.
- Compare the following covariance matrices:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right) .
$$

- Interpretation: A small value of the sampled Generalized Variance indicates either small scatter in data points or multicollinearity.

Geometric Interlude

- A random vector Y with positive definite covariance matrix Σ can be used to define a distance function on \mathbb{R}^{p} :

$$
d(x, y)=\sqrt{(x-y)^{T} \Sigma^{-1}(x-y)}
$$

- This is called the Mahalanobis distance induced by Σ.
- Exercise: This indeed satisfies the definition of a distance:

$$
\begin{aligned}
& \text { 1. } d(x, y)=d(y, x) \\
& \text { 2. } d(x, y) \geq 0 \text { and } d(x, y)=0 \Leftrightarrow x=y \\
& \text { 3. } d(x, z) \leq d(x, y)+d(y, z)
\end{aligned}
$$

Geometric Interlude if

- Using this distance, we can construct hyper-ellipsoids in \mathbb{R}^{p} as the set of all points x such that

$$
d(x, 0)=1
$$

- Equivalently:

$$
x^{T} \Sigma^{-1} x=1
$$

- Since Σ^{-1} is symmetric, we can use the spectral decomposition to rewrite it as:

$$
\Sigma^{-1}=\sum_{i=1}^{p} \lambda_{i}^{-1} v_{i} v_{i}^{T}
$$

where $\lambda_{1}, \ldots, \lambda_{p}$ are the eigenvalues of Σ.

Geometric Interlude ifi

- We thus get a new parametrization if the hyper-ellipsoid:

$$
\sum_{i=1}^{p}\left(\frac{v_{i}^{T} x}{\sqrt{\lambda_{i}}}\right)^{2}=1
$$

- Theorem: The volume of this hyper-ellipsoid is equal to

$$
\frac{2 \pi^{p / 2}}{p \Gamma(p / 2)} \sqrt{\lambda_{1} \cdots \lambda_{p}}
$$

- In other words, the Generalized Variance is proportional to the square of the volume of the hyper-ellipsoid defined by the covariance matrix.
- Note: the square root of the determinant of a matrix (if it exists) is sometimes called the Pfaffian.

Statistical Independence

- The variables Y_{1}, \ldots, Y_{p} are said to be mutually independent if

$$
F\left(y_{1}, \ldots, y_{p}\right)=F\left(y_{1}\right) \cdots F\left(y_{p}\right) .
$$

- If Y_{1}, \ldots, Y_{p} admit a joint density f (with marginal densities f_{1}, \ldots, f_{p}), and equivalent condition is

$$
f\left(y_{1}, \ldots, y_{p}\right)=f\left(y_{1}\right) \cdots f\left(y_{p}\right) .
$$

- Important property: If Y_{1}, \ldots, Y_{p} are mutually independent, then their joint moments factor:

$$
E\left(Y_{1}^{n_{1}} \cdots Y_{p}^{n_{p}}\right)=E\left(Y_{1}^{n_{1}}\right) \cdots E\left(Y_{p}^{n_{p}}\right) .
$$

Linear Combination of Random Variables

- Let $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{p}\right)$ be a random vector. Let \mathbf{A} be a $q \times p$ matrix, and let $b \in \mathbb{R}^{q}$.
- Then the random vector $\mathbf{X}:=\mathbf{A Y}+b$ has the following properties:
- Expectation: $E(\mathbf{X})=\mathbf{A} E(\mathbf{Y})+b$;
- Covariance: $\operatorname{Cov}(\mathbf{X})=\mathbf{A} \operatorname{Cov}(\mathbf{Y}) \mathbf{A}^{T}$

Transformation of Random Variables

- More generally, let $h: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ be a one-to-one function with inverse $h^{-1}=\left(h_{1}^{-1}, \ldots, h_{p}^{-1}\right)$. Define $\mathbf{X}=h(\mathbf{Y})$.
- Let J be the Jacobian matrix of h^{-1} :

$$
\left(\begin{array}{ccc}
\frac{\partial h_{1}^{-1}}{\partial y_{1}} & \cdots & \frac{\partial h_{1}^{-1}}{\partial y_{p}} \\
\vdots & \ddots & \vdots \\
\frac{\partial h_{p}^{-1}}{\partial y_{1}} & \cdots & \frac{\partial h_{p}^{-1}}{\partial y_{p}}
\end{array}\right)
$$

- Then the density of \mathbf{X} is given by

$$
g\left(x_{1}, \ldots, x_{p}\right)=f\left(h_{1}^{-1}\left(x_{1}\right), \ldots, h_{p}^{-1}\left(x_{p}\right)\right)|\operatorname{det}(J)| .
$$

Transformation of Random Variables if

- A few comments:
- This result is very useful for computing the density of transformations of normal random variables.
- If h is a linear transformation $\mathbf{Y} \mapsto A \mathbf{Y}$, then $J=A^{-1}$ (Exercise!).
- See practice problems for further examples (or go back to your notes from mathematical statistics).

Characteristic function

- We will make use of the characteristic function φ_{Y} of a p-dimensional random vector \mathbf{Y}.
- The function $\varphi_{Y}: \mathbb{R}^{p} \rightarrow \mathbb{C}$ is defined as the expected value

$$
\varphi_{Y}(\mathbf{t})=E\left(\exp \left(i \mathbf{t}^{T} \mathbf{Y}\right)\right)
$$

where $i^{2}=-1$.

- Note: The characteristic function of a random variable always exists.
- Example: The characteristic function of the constant random variable \mathbf{c} is $\varphi(\mathbf{t})=\exp \left(i \mathbf{t}^{T} \mathbf{c}\right)$.

Example I i

- Take the density of a normal distribution:

$$
f\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- Using the definition, we get

Example I ii

$$
\begin{aligned}
\varphi(t) & =\int_{-\infty}^{\infty} \exp (i t x) \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x^{2}-2 \mu x+\mu^{2}-2 i t \sigma^{2} x\right)}{2 \sigma^{2}}\right) d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x^{2}-2\left(\mu+i t \sigma^{2}\right) x+\mu^{2}\right)}{2 \sigma^{2}}\right) d x
\end{aligned}
$$

Example I iif

- Let's complete the square:

$$
\begin{aligned}
x^{2}-2\left(\mu+i t \sigma^{2}\right) x+\mu^{2}= & \left(x-\left(\mu+i t \sigma^{2}\right)\right)^{2} \\
& +\left(\mu^{2}-\left(\mu+i t \sigma^{2}\right)^{2}\right) \\
= & \left(x-\left(\mu+i t \sigma^{2}\right)\right)^{2} \\
& +\left(\mu^{2}-\left(\mu^{2}+2 i t \mu \sigma^{2}-\left(t \sigma^{2}\right)^{2}\right)\right) \\
= & \left(x-\left(\mu+i t \sigma^{2}\right)\right)^{2} \\
& +\left(\left(t \sigma^{2}\right)^{2}-2 i t \mu \sigma^{2}\right)
\end{aligned}
$$

Example I iv

- We thus get

$$
\begin{aligned}
& \varphi(t) \\
& =e^{\frac{-\left(\left(t \sigma^{2}\right)^{2}-2 i t \mu \sigma^{2}\right)}{2 \sigma^{2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-\left(x-\left(\mu+i t \sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}\right) d x \\
& =\exp \left(-\frac{t^{2} \sigma^{2}}{2}+i t \mu\right)
\end{aligned}
$$

Example II

- Take the density of a gamma distribution:

$$
f(x ; \alpha, \beta)=\frac{\beta^{\alpha} x^{\alpha-1} \exp (-\beta x)}{\Gamma(\alpha)}
$$

- Using the definition, we get

$$
\begin{aligned}
\varphi(t) & =\int_{0}^{\infty} \exp (i t x) \frac{\beta^{\alpha} x^{\alpha-1} \exp (-\beta x)}{\Gamma(\alpha)} d x \\
& =\frac{(\beta-i t)^{\alpha}}{(\beta-i t)^{\alpha}} \int_{0}^{\infty} \frac{\beta^{\alpha} x^{\alpha-1} \exp (-(\beta-i t) x)}{\Gamma(\alpha)} d x \\
& =\frac{\beta^{\alpha}}{(\beta-i t)^{\alpha}} \int_{0}^{\infty} \frac{(\beta-i t)^{\alpha} x^{\alpha-1} \exp (-(\beta-i t) x)}{\Gamma(\alpha)} d x \\
& =\left(1-\frac{i t}{\beta}\right)^{-\alpha}
\end{aligned}
$$

Properties of the characteristic function

1. $\varphi_{Y}(0)=1$
2. $\left|\varphi_{Y}(\mathbf{t})\right| \leq 1$ for all t
3. $\varphi_{Y}(-\mathbf{t})=\overline{\varphi_{Y}(\mathbf{t})}$
4. $\varphi_{Y}(\mathrm{t})$ is uniformly continuous.
5. If $\mathbf{Y}=A \mathbf{X}+b$, then $\varphi_{\mathbf{Y}}(t)=\exp \left(i t^{T} b\right) \varphi_{\mathbf{X}}\left(A^{T} t\right)$
6. Two random vectors are equal in distribution if and only if their characteristic functions are equal.
7. The components of $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{p}\right)$ are mutually independent if and only if $\varphi_{Y}(\mathbf{t})=\prod_{i=1}^{p} \varphi_{Y_{i}}\left(t_{i}\right)$.

Properties of the characteristic function

Levy Continuity Theorem

Let \mathbf{Y}_{n} be a sequence of p-dimensional random vectors, and let φ_{n} be the characteristic function of \mathbf{Y}_{n}. Then \mathbf{Y}_{n} converges in distribution to Y if and only if the sequence φ_{n} converges pointwise to a function φ that is continuous at the origin. When this is the case, the function φ is the characteristic function of the limiting distribution Y.

Example i

- Let X_{n} be Poisson with mean n.
- Exercise: The characteristic function of a $\operatorname{Pois}(\mu)$ random variable is $\varphi(t)=\exp \left(\mu\left(e^{i t}-1\right)\right)$.
- Let $Y_{n}=\frac{X_{n}-n}{\sqrt{n}}$ be the standardized random variable.
- To show: Y_{n} converges in a distribution to a standard normal random variable.
- From the properties above, we have

$$
\begin{aligned}
\varphi_{\mathbf{Y}_{n}}(t) & =\exp (-i t n / \sqrt{n}) \varphi_{\mathbf{X}_{n}}(t / \sqrt{n}) \\
& =\exp \left(n\left(e^{i t / \sqrt{n}}-1\right)-i t n / \sqrt{n}\right) .
\end{aligned}
$$

Example if

- We will show that this converges to the characteristic function of the standard normal: $\varphi(t)=\exp \left(-t^{2} / 2\right)$.
- We will use a change of variables and the Taylor expansion of the exponential distribution around 0 .
- First, define $u=i t / \sqrt{n}$. We then get $n=-t^{2} / u^{2}$ (here we fix t).
- Note that $u \rightarrow 0$ is now equivalent to $n \rightarrow \infty$.

Example ifi

- Recall the Taylor expansion: as $u \rightarrow 0$, we have

$$
\exp (u)=1+u+\frac{u^{2}}{2}+o\left(u^{2}\right)
$$

where $o\left(u^{2}\right)$ represents a quantity that goes to zero faster than u^{2}.

Example iv

- We then get

$$
\begin{aligned}
n\left(e^{i t / \sqrt{n}}-1\right)-i \operatorname{tn} / \sqrt{n} & =-\frac{t^{2}}{u^{2}}\left(e^{u}-1\right)+\frac{t^{2}}{u} \\
& =-\frac{t^{2}}{u^{2}}\left(u+\frac{u^{2}}{2}+o\left(u^{2}\right)\right)+\frac{t^{2}}{u} \\
& =-\frac{t^{2}}{u}-\frac{t^{2}}{2}-\frac{t^{2}}{u^{2}} o\left(u^{2}\right)+\frac{t^{2}}{u} \\
& =-\frac{t^{2}}{2}-\frac{t^{2}}{u^{2}} o\left(u^{2}\right)
\end{aligned}
$$

Example

- Since the second term goes to zero as $u \rightarrow 0$, we can conclude that

$$
n\left(e^{i t / \sqrt{n}}-1\right)-i t n / \sqrt{n} \rightarrow \frac{-t^{2}}{2}, \quad n \rightarrow \infty
$$

- And since the exponential function is continuous everywhere, we get

$$
\varphi_{\mathbf{Y}_{n}}(t) \rightarrow \exp \left(\frac{-t^{2}}{2}\right) \text { for all } t, \quad n \rightarrow \infty
$$

- The result follows from the Levy Continuity Theorem.

Weak Law of Large Numbers

- We can prove the multivariate (weak) Law of Large Numbers using the Levy Continuity theorem.

WLLN

Let \mathbf{Y}_{n} be a random sample with characteristic function φ and mean μ. Assume φ is differentiable at the origin. Then $\frac{1}{n} \sum_{k=1}^{n} \mathbf{Y}_{k} \rightarrow \mu$ in probability as $n \rightarrow \infty$.

Proof (WLLN)

- First, note that since φ is differentiable at the origin, we have $\varphi^{\prime}(0)=i \mu$.
- We can look at the Taylor expansion of φ around 0 :

$$
\varphi(\mathbf{t})=1+\mathbf{t}^{T} \varphi^{\prime}(0)+o(\mathbf{t})=1+i \mathbf{t}^{T} \mu+o(\mathbf{t})
$$

- Now note that the characteristic function of $\frac{1}{n} \sum_{k=1}^{n} \mathbf{Y}_{k}$ is given by

Proof (WLLN) ii

$$
\begin{aligned}
\varphi_{n}(\mathbf{t}) & =E\left(\exp \left(i \mathbf{t}^{T} \frac{1}{n} \sum_{k=1}^{n} \mathbf{Y}_{k}\right)\right) \\
& =E\left(\prod_{k=1}^{n} \exp \left(i\left(\frac{\mathbf{t}}{n}\right)^{T} \mathbf{Y}_{k}\right)\right) \\
& =\prod_{k=1}^{n} E\left(\exp \left(i\left(\frac{\mathbf{t}}{n}\right)^{T} \mathbf{Y}_{k}\right)\right) \\
& =\varphi\left(\frac{\mathbf{t}}{n}\right)^{n} .
\end{aligned}
$$

Proof (WLLN) iif

- Using the Taylor expansion of φ, we get

$$
\begin{aligned}
\varphi_{n}(\mathbf{t}) & =\varphi\left(\frac{\mathbf{t}}{n}\right)^{n} \\
& =\left(1+i\left(\frac{\mathbf{t}}{n}\right)^{T} \mu+o\left(\frac{1}{n}\right)\right)^{n}
\end{aligned}
$$

- The left-hand side converges to the exponential distribution:

$$
\varphi_{n}(\mathbf{t}) \rightarrow \exp \left(i \mathbf{t}^{T} \mu\right)
$$

- But this is simply the characteristic function of the constant random variable μ.

Cramer-Wold Theorem

Two random vectors \mathbf{X} and \mathbf{Y} are equal in distribution if and only if the linear combinations $\mathbf{t}^{T} \mathbf{X}$ and $\mathbf{t}^{T} \mathbf{Y}$ are equal in distribution for all vectors $\mathrm{t} \in \mathbb{R}^{p}$.

Proof

Let $\varphi_{\mathbf{X}}, \varphi_{\mathbf{Y}}$ be the characteristic functions of \mathbf{X} and \mathbf{Y}, respectively. Let $s \in \mathbb{R}$. Using the definition, we can see that

$$
\varphi_{\mathbf{t}^{T} \mathbf{X}}(s)=E\left(\exp \left(i s\left(\mathbf{t}^{T} \mathbf{X}\right)\right)\right)=E\left(\exp \left(i(s \mathbf{t})^{T} \mathbf{X}\right)\right)=\varphi_{\mathbf{X}}(s \mathbf{t})
$$

The result follows from the uniqueness of characteristic functions.

Multivariate Slutsky's Theorem

Let \mathbf{X}_{n} be a sequence of q-dimensional random vectors that converge in distribution to \mathbf{X}, and let \mathbf{Y}_{n} be a sequence of p-dimensional random vectors that converge in distribution to a constant vector $\mathbf{c} \in \mathbb{R}^{p}$. Then for any continuous function $f: \mathbb{R}^{p+q} \rightarrow \mathbb{R}^{k}$, we have

$$
f\left(\mathbf{X}_{n}, \mathbf{Y}_{n}\right) \rightarrow f(\mathbf{X}, \mathbf{c}) \text { in distribution. }
$$

- Common examples of f include:
- $f(\mathbf{X}, \mathbf{Y})=\mathbf{X}+\mathbf{Y}$
- $f(\mathbf{X}, \mathbf{Y})=\mathbf{X}^{T} \mathbf{Y}$ when $p=q$.

Multivariate Slutsky's Theorem ii

- Note that both \mathbf{X}_{n} or \mathbf{Y}_{n} could be matrices:
- This follows from the correspondence between the space of $n \times p$ matrices and $\mathbb{R}^{n p}$ given by stacking the columns of a matrix into a single column vector.
- For example, if A_{n} are $r \times q$ matrices converging to A, then we could conclude

$$
A_{n} \mathbf{X}_{n} \rightarrow A \mathbf{X}
$$

Proof (Slutsky) i

- By the Continuous mapping theorem, it is sufficient to show that

$$
\left(\mathbf{X}_{n}, \mathbf{Y}_{n}\right) \rightarrow(\mathbf{X}, c) \quad \text { in distribution. }
$$

- For any $\mathbf{u} \in \mathbb{R}^{q}, \mathbf{v} \in \mathbb{R}^{p}$, the Cramer-Wold theorem implies

$$
\begin{aligned}
& \mathbf{u}^{T} \mathbf{X}_{n} \rightarrow \mathbf{u}^{T} \mathbf{X} \\
& \mathbf{v}^{T} \mathbf{Y}_{n} \rightarrow \mathbf{v}^{T} \mathbf{c}
\end{aligned}
$$

Proof (Slutsky) if

- From the univariate Slutsky's theorem, we get

$$
\mathbf{u}^{T} \mathbf{X}_{n}+\mathbf{v}^{T} \mathbf{Y}_{n} \rightarrow \mathbf{u}^{T} \mathbf{X}+\mathbf{v}^{T} \mathbf{c}
$$

- If we let $\mathbf{w}=(\mathbf{u}, \mathbf{v})$, we have just shown that, for all $\mathbf{w} \in \mathbb{R}^{q+p}$, we have

$$
\mathbf{w}^{T}\left(\mathbf{X}_{n}, \mathbf{Y}_{n}\right) \rightarrow \mathbf{w}^{T}(\mathbf{X}, c) .
$$

- Using once more the Cramer-Wold theorem, we can conclude the proof of this theorem.

Sample Statistics

- Let $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$ be a random sample from a p-dimensional distribution with mean μ and covariance matrix Σ.
- Sample mean: We define the sample mean $\overline{\mathbf{Y}}_{n}$ as follows:

$$
\overline{\mathbf{Y}}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{Y}_{i}
$$

- Properties:
- $E\left(\overline{\mathbf{Y}}_{n}\right)=\mu$ (i.e. $\overline{\mathbf{Y}}_{n}$ is an unbiased estimator of μ);
- $\operatorname{Cov}\left(\overline{\mathbf{Y}}_{n}\right)=\frac{1}{n} \Sigma$.
- From WLLN: $\overline{\mathbf{Y}}_{n} \rightarrow \mu$ in probability.

Sample Statistics ii

- Sample covariance: We define the sample covariance S_{n} as follows:

$$
\mathbf{S}_{n}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}_{n}\right)\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}_{n}\right)^{T} .
$$

- Properties:
- $E\left(\mathbf{S}_{n}\right)=\frac{n-1}{n} \Sigma$ (i.e. \mathbf{S}_{n} is a biased estimator of Σ);
- If we define $\tilde{\mathbf{S}}_{n}$ with n instead of $n-1$ in the denominator above, then $E\left(\tilde{\mathbf{S}}_{n}\right)=\Sigma$ (i.e. $\tilde{\mathbf{S}}_{n}$ is an unbiased estimator of Σ).

Multivariate Central Limit Theorem

Let $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$ be a random sample from a p-dimensional distribution with mean μ and covariance matrix Σ. Then

$$
\sqrt{n}\left(\overline{\mathbf{Y}}_{n}-\mu\right) \rightarrow N_{p}(0, \Sigma) .
$$

Proof

This follows from the Cramer-Wold theorem and the univariate CLT (Exercise).

Example i

- Let $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$ be a random sample from a p-dimensional distribution with mean μ and covariance matrix Σ.
- Exercise: $E\left(\mathbf{Y}_{n} \mathbf{Y}_{n}^{T}\right)=\Sigma+\mu \mu^{T}$.
- Using Slutsky's theorem and the WLLN, we will show that $\mathbf{S}_{n} \rightarrow \Sigma$.
- By the WLLN, we have that

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbf{Y}_{i} \mathbf{Y}_{i}^{T} \rightarrow \Sigma+\mu \mu^{T}
$$

Example if

- We then have that

$$
\begin{aligned}
\tilde{\mathbf{S}}_{n} & =\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}_{n}\right)\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}_{n}\right)^{T} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{Y}_{i} \mathbf{Y}_{i}^{T}-\overline{\mathbf{Y}}_{n} \mathbf{Y}_{i}^{T}-\mathbf{Y}_{i} \overline{\mathbf{Y}}_{n}^{T}+\overline{\mathbf{Y}}_{n} \overline{\mathbf{Y}}_{n}^{T}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbf{Y}_{i} \mathbf{Y}_{i}^{T}-\overline{\mathbf{Y}}_{n} \overline{\mathbf{Y}}_{n}^{T}-\overline{\mathbf{Y}}_{n} \overline{\mathbf{Y}}_{n}^{T}+\overline{\mathbf{Y}}_{n} \overline{\mathbf{Y}}_{n}^{T} \\
& =\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{Y}_{i} \mathbf{Y}_{i}^{T}\right)-\overline{\mathbf{Y}}_{n} \overline{\mathbf{Y}}_{n}^{T} \rightarrow \Sigma \quad \text { (Slutsky). }
\end{aligned}
$$

- But since $\tilde{\mathbf{S}}_{n}=\frac{n-1}{n} \mathbf{S}_{n}$, we also have $\mathbf{S}_{n} \rightarrow \Sigma$.

Multivariate Delta Method i

Let \mathbf{Y}_{n} be a sequence of p-dimensional random vectors such that

$$
\sqrt{n}\left(\mathbf{Y}_{n}-\mathbf{c}\right) \rightarrow \mathbf{Z} \quad \text { in distribution }
$$

where $\mathbf{c} \in \mathbb{R}^{p}$. Furthermore, assume $g: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is differentiable at \mathbf{c} with derivative $\nabla g(\mathbf{c})$. Then

$$
\sqrt{n}\left(g\left(\mathbf{Y}_{n}\right)-g(\mathbf{c})\right) \rightarrow \nabla g(\mathbf{c}) \mathbf{Z} \quad \text { in distribution. }
$$

Multivariate Delta Method ii

In other words, we can derive useful approximations: if \mathbf{Y}_{n} is a random sample with mean \mathbf{c} and covariance matrix Σ :

- $E\left(g\left(\mathbf{Y}_{n}\right)\right) \approx g(\mathbf{c})$;
- $\operatorname{Var}\left(g\left(\mathbf{Y}_{n}\right)\right) \approx \nabla g(\mathbf{c}) \Sigma \nabla g(\mathbf{c})^{T}$.

Example

- By the Central Limit Theorem, we have

$$
\sqrt{n}\left(\overline{\mathbf{Y}}_{n}-\mu\right) \rightarrow N_{p}(0, \Sigma) .
$$

- From the Delta method, we get

$$
\sqrt{n}\left(g\left(\overline{\mathbf{Y}}_{n}\right)-g(\mu)\right) \rightarrow N_{p}\left(0, \nabla g(\mu) \Sigma \nabla g(\mu)^{T}\right) .
$$

- For example, if $\mathbf{Y}_{n}>0$, then we have

$$
\sqrt{n}\left(\log \left(\overline{\mathbf{Y}}_{n}\right)-\log (\mu)\right) \rightarrow N_{p}\left(0, \tilde{\mu} \Sigma \tilde{\mu}^{T}\right)
$$

where log is applied entrywise, and $\tilde{\mu}=\left(\mu_{1}^{-1}, \ldots, \mu_{p}^{-1}\right)$.

