Review of Linear Algebra

Max Turgeon
STAT 7200-Multivariate Statistics

Eigenvalues

- Let \mathbf{A} be a square $n \times n$ matrix.
- The equation

$$
\operatorname{det}\left(\mathbf{A}-\lambda I_{n}\right)=0
$$

is called the characteristic equation of \mathbf{A}.

- This is a polynomial equation of degree n, and its roots are called the eigenvalues of \mathbf{A}.

Example i

(A <- matrix $(c(1,2,3,2), n c o l=2))$
\#\# [,1] [,2]
\#\# [1,] 1 3
\#\# [2,] 2
eigen(A)\$values
\#\# [1] 4 -1

A few properties

Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of \mathbf{A} (with multiplicities).

1. $\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} \lambda_{i}$;
2. $\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \lambda_{i}$;
3. The eigenvalues of \mathbf{A}^{k} are $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}$, for k a nonnegative integer;
4. If \mathbf{A} is invertible, then the eigenvalues of \mathbf{A}^{-1} are $\lambda_{1}^{-1}, \ldots, \lambda_{n}^{-1}$.
5. If \mathbf{A} is symmetric, all eigenvalues are real. (Exercise:

Prove this.)

Eigenvectors

- If λ is an eigenvalue of \mathbf{A}, then (by definition) we have $\operatorname{det}\left(\mathbf{A}-\lambda I_{n}\right)=0$.
- In other words, the following equivalent statements hold:
- The matrix $\mathbf{A}-\lambda I_{n}$ is singular;
- The kernel space of $\mathbf{A}-\lambda I_{n}$ is nontrivial (i.e. not equal to the zero vector);
- The system of equations $\left(\mathbf{A}-\lambda I_{n}\right) v=0$ has a nontrivial solution;
- There exists a nonzero vector v such that

$$
\mathbf{A} v=\lambda v
$$

- Such a vector is called an eigenvector of A.

Example (cont'd)

eigen(A)\$vectors
\#\#
[,1]
[,2]
\#\# [1,] -0.7071068-0.8320503
\#\# [2,] -0.7071068 0.5547002

Spectral Decomposition

Theorem

Let \mathbf{A} be an $n \times n$ symmetric matrix, and let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be its eigenvalues (with multiplicity). Then there exist vectors v_{1}, \ldots, v_{n} such that

1. $\mathbf{A} v_{i}=\lambda_{i} v_{i}$, i.e. v_{i} is an eigenvector, for all i;
2. If $i \neq j$, then $v_{i}^{T} v_{j}=0$, i.e. they are orthogonal;
3. For all i, we have $v_{i}^{T} v_{i}=1$, i.e. they have unit norm;
4. We can write $\mathbf{A}=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T}$.

In matrix form: $\mathbf{A}=\mathbf{V} \Lambda \mathbf{V}^{T}$, where the columns of \mathbf{V} are the vectors v_{i}, and Λ is a diagonal matrix with the eigenvalues λ_{i} on its diagonal.

Positive-definite matrices

Let \mathbf{A} be a real symmetric matrix, and let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be its (real) eigenvalues.

1. If $\lambda_{i}>0$ for all i, we say \mathbf{A} is positive definite.
2. If the inequality is not strict, if $\lambda_{i} \geq 0$, we say \mathbf{A} is positive semidefinite.
3. Similary, if $\lambda_{i}<0$ for all i, we say \mathbf{A} is negative definite.
4. If the inequality is not strict, if $\lambda_{i} \leq 0$, we say \mathbf{A} is negative semidefinite.

Note: If \mathbf{A} is positive-definite, then it is invertible!

Matrix Square Root

- Let \mathbf{A} be a positive semidefinite symmetric matrix.
- By the Spectral Decomposition, we can write

$$
\mathbf{A}=P \Lambda P^{T}
$$

- Since \mathbf{A} is positive-definite, we know that the elements on the diagonal of Λ are positive.
- Let $\Lambda^{1 / 2}$ be the diagonal matrix whose entries are the square root of the entries on the diagonal of Λ.
- For example:

$$
\Lambda=\left(\begin{array}{cc}
1.5 & 0 \\
0 & 0.5
\end{array}\right) \Rightarrow \Lambda^{1 / 2}=\left(\begin{array}{cc}
1.2247 & 0 \\
0 & 0.7071
\end{array}\right)
$$

Matrix Square Root ii

- We define the square root $\mathbf{A}^{1 / 2}$ of \mathbf{A} as follows:

$$
\mathbf{A}^{1 / 2}:=P \Lambda^{1 / 2} P^{T}
$$

- Check:

$$
\begin{aligned}
\mathbf{A}^{1 / 2} \mathbf{A}^{1 / 2} & =\left(P \Lambda^{1 / 2} P^{T}\right)\left(P \Lambda^{1 / 2} P^{T}\right) \\
& =P \Lambda^{1 / 2}\left(P^{T} P\right) \Lambda^{1 / 2} P^{T} \\
& =P \Lambda^{1 / 2} \Lambda^{1 / 2} P^{T} \quad(P \text { is orthogonal }) \\
& =P \Lambda P^{T} \\
& =\mathbf{A}
\end{aligned}
$$

Matrix Square Root iii

- Be careful: your intuition about square roots of positive real numbers doesn't translate to matrices.
- In particular, matrix square roots are not unique (unless you impose further restrictions).

Cholesky Decomposition

- Another common way to obtain a square root matrix for a positive definite matrix \mathbf{A} is via the Cholesky decomposition.
- There exists a unique matrix L such that:
- L is lower triangular (i.e. all entries above the diagonal are zero);
- The entries on the diagonal are positive;
- $\mathbf{A}=L L^{T}$.
- For matrix square roots, the Cholesky decomposition should be prefered to the eigenvalue decomposition because:
- It is computationally more efficient;
- It is numerically more stable.

Example i

A <- matrix $(c(1,0.5,0.5,1)$, nrow $=2)$
\# Eigenvalue method
result <- eigen(A)
Lambda <- diag(result\$values)
P <- result\$vectors
A_sqrt <- P \%*\% Lambda~0. 5% \% $\%$ t (P)
all.equal(A, A_sqrt $\% * \%$ A_sqrt) \# CHECK
\#\# [1] TRUE

Example if

\# Cholesky method
\# It's upper triangular!
(L <- chol(A))

\#\#	$[, 1]$	$[, 2]$
\#\#	$[1]$,	1
\#\#	0.5000000	
[2,]	0	0.8660254

all.equal (A, t(L) \%*\% L) \# CHECK
\#\# [1] TRUE

Singular Value Decomposition

- We saw earlier that real symmetric matrices are diagonalizable, i.e. they admit a decomposition of the form $P \Lambda P^{T}$ where
- Λ is diagonal;
- P is orthogonal, i.e. $P P^{T}=P^{T} P=I$.
- For a general $n \times p$ matrix A, we have the Singular Value Decomposition (SVD).
- We can write $\mathbf{A}=U D V^{T}$, where
- U is an $n \times n$ orthogonal matrix;
- V is a $p \times p$ orthogonal matrix;
- D is an $n \times p$ diagonal matrix.

Singular Value Decomposition ii

- We say that:
- the columns of U are the left-singular vectors of \mathbf{A};
- the columns of V are the right-singular vectors of \mathbf{A};
- the nonzero entries of D are the singular values of \mathbf{A}.

Example i

set.seed(1234)
A <- matrix (rnorm(3 * 2), ncol = 2, nrow $=3$)
result <- svd(A)
names (result)
\#\# [1] "d" "u" "v"
result\$d
\#\# [1] 2.86020180 .6868562

Example if

result\$u

\#\#	$[, 1]$	$[, 2]$
\#\# $[1]$,	-0.9182754	-0.359733536
\#\# [2,]	0.1786546	-0.003617426
\#\# [3,]	0.3533453	-0.933048068

result\$v
\#\# [,1]
[,2]
\#\# [1,] 0.5388308 -0.8424140
\#\# [2,] 0.84241400 .5388308

Example iif

D <- diag(result\$d)
all.equal (A, result\$u \%*\% D \%*\% t(result\$v)) \#CHECK
\#\# [1] TRUE

Example iv

$$
\begin{aligned}
& \text { \# Note: crossprod(A) }==t(A) \% * \% A \\
& \# \text { tcrossprod(A) }==A \% * \% t(A) \\
& U \text { <- eigen(tcrossprod(A)) \$vectors } \\
& V \text { <- eigen(crossprod(A))\$vectors } \\
& D ~<- \text { matrix(0, nrow }=3, \text { ncol }=2) \\
& \text { diag(D) <- result\$d }
\end{aligned}
$$

all.equal (A, U \%*\% D \%*\% t(V)) \# CHECK
\#\# [1] "Mean relative difference: 1.95887"

Example v

\# What went wrong?
\# Recall that eigenvectors are unique \# only up to a sign!
\# These elements should all be positive diag(t(U) \%*\% A \%*\% V)
\#\# [1] -2.8602018 0.6868562

Example vi

```
# Therefore we need to multiply the
# corresponding columns of U or V
# (but not both!) by -1
cols_flip <- which(diag(t(U) %*% A %*% V) < 0)
V[,cols_flip] <- -V[,cols_flip]
all.equal(A, U %*% D %*% t(V)) # CHECK
```

\#\# [1] TRUE

