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Eigenvalues

• Let A be a square n × n matrix.
• The equation

det(A − λIn) = 0

is called the characteristic equation of A.
• This is a polynomial equation of degree n, and its roots

are called the eigenvalues of A.
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Example i

(A <- matrix(c(1, 2, 3, 2), ncol = 2))

## [,1] [,2]
## [1,] 1 3
## [2,] 2 2

eigen(A)$values

## [1] 4 -1
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A few properties

Let λ1, . . . , λn be the eigenvalues of A (with multiplicities).

1. tr(A) = ∑n
i=1 λi;

2. det(A) = ∏n
i=1 λi;

3. The eigenvalues of Ak are λk
1, . . . , λk

n, for k a
nonnegative integer;

4. If A is invertible, then the eigenvalues of A−1 are
λ−1

1 , . . . , λ−1
n .

5. If A is symmetric, all eigenvalues are real. (Exercise:
Prove this.)
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Eigenvectors

• If λ is an eigenvalue of A, then (by definition) we have
det(A − λIn) = 0.

• In other words, the following equivalent statements hold:
• The matrix A − λIn is singular;
• The kernel space of A − λIn is nontrivial (i.e. not equal

to the zero vector);
• The system of equations (A − λIn)v = 0 has a

nontrivial solution;
• There exists a nonzero vector v such that

Av = λv.

• Such a vector is called an eigenvector of A.
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Example (cont’d)

eigen(A)$vectors

## [,1] [,2]
## [1,] -0.7071068 -0.8320503
## [2,] -0.7071068 0.5547002
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Spectral Decomposition

Theorem
Let A be an n × n symmetric matrix, and let λ1 ≥ · · · ≥ λn

be its eigenvalues (with multiplicity). Then there exist vectors
v1, . . . , vn such that

1. Avi = λivi, i.e. vi is an eigenvector, for all i;
2. If i ̸= j, then vT

i vj = 0, i.e. they are orthogonal;
3. For all i, we have vT

i vi = 1, i.e. they have unit norm;
4. We can write A = ∑n

i=1 λiviv
T
i .

In matrix form: A = VΛVT , where the columns of V are the
vectors vi, and Λ is a diagonal matrix with the eigenvalues λi

on its diagonal.
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Positive-definite matrices

Let A be a real symmetric matrix, and let λ1 ≥ · · · ≥ λn be
its (real) eigenvalues.

1. If λi > 0 for all i, we say A is positive definite.
2. If the inequality is not strict, if λi ≥ 0, we say A is

positive semidefinite.
3. Similary, if λi < 0 for all i, we say A is negative definite.
4. If the inequality is not strict, if λi ≤ 0, we say A is

negative semidefinite.

Note: If A is positive-definite, then it is invertible!
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Matrix Square Root i

• Let A be a positive semidefinite symmetric matrix.
• By the Spectral Decomposition, we can write

A = PΛP T .

• Since A is positive-definite, we know that the elements
on the diagonal of Λ are positive.

• Let Λ1/2 be the diagonal matrix whose entries are the
square root of the entries on the diagonal of Λ.

• For example:

Λ =

1.5 0
0 0.5

 ⇒ Λ1/2 =

1.2247 0
0 0.7071

 .
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Matrix Square Root ii
• We define the square root A1/2 of A as follows:

A1/2 := PΛ1/2P T .

• Check:

A1/2A1/2 = (PΛ1/2P T )(PΛ1/2P T )
= PΛ1/2(P T P )Λ1/2P T

= PΛ1/2Λ1/2P T (P is orthogonal)
= PΛP T

= A.
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Matrix Square Root iii

• Be careful: your intuition about square roots of positive
real numbers doesn’t translate to matrices.

• In particular, matrix square roots are not unique (unless
you impose further restrictions).
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Cholesky Decomposition

• Another common way to obtain a square root matrix for
a positive definite matrix A is via the Cholesky
decomposition.

• There exists a unique matrix L such that:
• L is lower triangular (i.e. all entries above the diagonal

are zero);
• The entries on the diagonal are positive;
• A = LLT .

• For matrix square roots, the Cholesky decomposition
should be prefered to the eigenvalue decomposition
because:

• It is computationally more efficient;
• It is numerically more stable.
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Example i

A <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)

# Eigenvalue method
result <- eigen(A)
Lambda <- diag(result$values)
P <- result$vectors
A_sqrt <- P %*% Lambda^0.5 %*% t(P)

all.equal(A, A_sqrt %*% A_sqrt) # CHECK

## [1] TRUE
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Example ii

# Cholesky method
# It's upper triangular!
(L <- chol(A))

## [,1] [,2]
## [1,] 1 0.5000000
## [2,] 0 0.8660254

all.equal(A, t(L) %*% L) # CHECK

## [1] TRUE

14



Singular Value Decomposition i

• We saw earlier that real symmetric matrices are
diagonalizable, i.e. they admit a decomposition of the
form PΛP T where

• Λ is diagonal;
• P is orthogonal, i.e. PP T = P T P = I.

• For a general n × p matrix A, we have the Singular Value
Decomposition (SVD).

• We can write A = UDV T , where
• U is an n × n orthogonal matrix;
• V is a p × p orthogonal matrix;
• D is an n × p diagonal matrix.
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Singular Value Decomposition ii

• We say that:
• the columns of U are the left-singular vectors of A;
• the columns of V are the right-singular vectors of A;
• the nonzero entries of D are the singular values of A.
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Example i

set.seed(1234)
A <- matrix(rnorm(3 * 2), ncol = 2, nrow = 3)
result <- svd(A)
names(result)

## [1] "d" "u" "v"

result$d

## [1] 2.8602018 0.6868562
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Example ii

result$u

## [,1] [,2]
## [1,] -0.9182754 -0.359733536
## [2,] 0.1786546 -0.003617426
## [3,] 0.3533453 -0.933048068

result$v

## [,1] [,2]
## [1,] 0.5388308 -0.8424140
## [2,] 0.8424140 0.5388308
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Example iii

D <- diag(result$d)
all.equal(A, result$u %*% D %*% t(result$v)) #CHECK

## [1] TRUE
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Example iv

# Note: crossprod(A) == t(A) %*% A
# tcrossprod(A) == A %*% t(A)
U <- eigen(tcrossprod(A))$vectors
V <- eigen(crossprod(A))$vectors

D <- matrix(0, nrow = 3, ncol = 2)
diag(D) <- result$d

all.equal(A, U %*% D %*% t(V)) # CHECK

## [1] "Mean relative difference: 1.95887"
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Example v

# What went wrong?
# Recall that eigenvectors are unique
# only up to a sign!

# These elements should all be positive
diag(t(U) %*% A %*% V)

## [1] -2.8602018 0.6868562
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Example vi

# Therefore we need to multiply the
# corresponding columns of U or V
# (but not both!) by -1
cols_flip <- which(diag(t(U) %*% A %*% V) < 0)
V[,cols_flip] <- -V[,cols_flip]

all.equal(A, U %*% D %*% t(V)) # CHECK

## [1] TRUE

22


