Review of Linear Algebra

Max Turgeon

STAT 7200-Multivariate Statistics

- Let \mathbf{A} be a square $n \times n$ matrix.
- The equation

$$\det(\mathbf{A} - \lambda I_n) = 0$$

is called the *characteristic equation* of \mathbf{A} .

• This is a polynomial equation of degree *n*, and its roots are called the *eigenvalues* of **A**.

(A <- matrix(c(1, 2, 3, 2), ncol = 2))

[,1] [,2]
[1,] 1 3
[2,] 2 2

eigen(A)\$values

[1] 4 -1

Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A (with multiplicities).

- 1. $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i;$
- 2. det(\mathbf{A}) = $\prod_{i=1}^{n} \lambda_i$;
- 3. The eigenvalues of \mathbf{A}^k are $\lambda_1^k, \ldots, \lambda_n^k$, for k a nonnegative integer;
- 4. If A is invertible, then the eigenvalues of A^{-1} are $\lambda_1^{-1}, \ldots, \lambda_n^{-1}$.
- 5. If A is symmetric, all eigenvalues are *real*. (Exercise: Prove this.)

Eigenvectors

- If λ is an eigenvalue of A, then (by definition) we have det(A − λI_n) = 0.
- In other words, the following equivalent statements hold:
 - The matrix $\mathbf{A} \lambda I_n$ is singular;
 - The kernel space of A λI_n is nontrivial (i.e. not equal to the zero vector);
 - The system of equations (A λI_n)v = 0 has a nontrivial solution;
 - There exists a nonzero vector v such that

$$\mathbf{A}v = \lambda v.$$

• Such a vector is called an *eigenvector* of A.

Example (cont'd)

eigen(A)\$vectors

- ## [,1] [,2]
- ## [1,] -0.7071068 -0.8320503
- ## [2,] -0.7071068 0.5547002

Theorem

Let A be an $n \times n$ symmetric matrix, and let $\lambda_1 \ge \cdots \ge \lambda_n$ be its eigenvalues (with multiplicity). Then there exist vectors v_1, \ldots, v_n such that

1. $\mathbf{A}v_i = \lambda_i v_i$, i.e. v_i is an eigenvector, for all i; 2. If $i \neq j$, then $v_i^T v_j = 0$, i.e. they are orthogonal; 3. For all i, we have $v_i^T v_i = 1$, i.e. they have unit norm; 4. We can write $\mathbf{A} = \sum_{i=1}^n \lambda_i v_i v_i^T$.

In matrix form: $\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^T$, where the columns of \mathbf{V} are the vectors v_i , and Λ is a diagonal matrix with the eigenvalues λ_i on its diagonal.

Let A be a real symmetric matrix, and let $\lambda_1 \geq \cdots \geq \lambda_n$ be its (real) eigenvalues.

- 1. If $\lambda_i > 0$ for all *i*, we say **A** is *positive definite*.
- 2. If the inequality is not strict, if $\lambda_i \ge 0$, we say A is *positive semidefinite*.
- 3. Similary, if $\lambda_i < 0$ for all *i*, we say **A** is *negative definite*.
- 4. If the inequality is not strict, if $\lambda_i \leq 0$, we say A is *negative semidefinite*.

Note: If A is *positive-definite*, then it is invertible!

Matrix Square Root i

- Let A be a positive semidefinite symmetric matrix.
- By the Spectral Decomposition, we can write

$$\mathbf{A} = P \Lambda P^T.$$

- Since A is positive-definite, we know that the elements on the diagonal of Λ are positive.
- Let Λ^{1/2} be the diagonal matrix whose entries are the square root of the entries on the diagonal of Λ.
- For example:

$$\Lambda = \begin{pmatrix} 1.5 & 0 \\ 0 & 0.5 \end{pmatrix} \Rightarrow \Lambda^{1/2} = \begin{pmatrix} 1.2247 & 0 \\ 0 & 0.7071 \end{pmatrix}.$$

Matrix Square Root ii

• We define the square root $A^{1/2}$ of A as follows:

 $\mathbf{A}^{1/2} := P \Lambda^{1/2} P^T.$

• Check:

$$\mathbf{A}^{1/2}\mathbf{A}^{1/2} = (P\Lambda^{1/2}P^T)(P\Lambda^{1/2}P^T)$$

= $P\Lambda^{1/2}(P^TP)\Lambda^{1/2}P^T$
= $P\Lambda^{1/2}\Lambda^{1/2}P^T$ (*P* is orthogonal)
= $P\Lambda P^T$
= \mathbf{A}

- Be careful: your intuition about square roots of positive real numbers doesn't translate to matrices.
 - In particular, matrix square roots are **not** unique (unless you impose further restrictions).

Cholesky Decomposition

- Another common way to obtain a square root matrix for a positive definite matrix A is via the *Cholesky decomposition*.
- There exists a unique matrix L such that:
 - L is lower triangular (i.e. all entries above the diagonal are zero);
 - The entries on the diagonal are positive;
 - $\mathbf{A} = LL^T$.
- For matrix square roots, the Cholesky decomposition should be prefered to the eigenvalue decomposition because:
 - It is computationally more efficient;
 - It is numerically more stable.

```
A \leftarrow matrix(c(1, 0.5, 0.5, 1), nrow = 2)
```

```
# Eigenvalue method
result <- eigen(A)
Lambda <- diag(result$values)
P <- result$vectors
A_sqrt <- P %*% Lambda^0.5 %*% t(P)</pre>
```

all.equal(A, A_sqrt %*% A_sqrt) # CHECK

Example ii

Cholesky method
It's upper triangular!
(L <- chol(A))</pre>

##		[,1]	[,2]
##	[1,]	1	0.5000000
##	[2,]	0	0.8660254

all.equal(A, t(L) %*% L) # CHECK

Singular Value Decomposition i

- We saw earlier that real symmetric matrices are diagonalizable, i.e. they admit a decomposition of the form PΛP^T where
 - Λ is diagonal;
 - P is orthogonal, i.e. $PP^T = P^T P = I$.
- For a general n × p matrix A, we have the Singular Value Decomposition (SVD).
- We can write $\mathbf{A} = UDV^T$, where
 - U is an $n \times n$ orthogonal matrix;
 - V is a p × p orthogonal matrix;
 - D is an $n \times p$ diagonal matrix.

- We say that:
 - the columns of U are the *left-singular vectors* of A;
 - the columns of V are the *right-singular vectors* of A;
 - the nonzero entries of D are the singular values of A.

```
set.seed(1234)
A <- matrix(rnorm(3 * 2), ncol = 2, nrow = 3)
result <- svd(A)
names(result)</pre>
```

[1] "d" "u" "v"

result\$d

[1] 2.8602018 0.6868562

Example ii

result\$u

##		[,1]	[,2]
##	[1,]	-0.9182754	-0.359733536
##	[2,]	0.1786546	-0.003617426
##	[3,]	0.3533453	-0.933048068

result\$v

[,1] [,2]
[1,] 0.5388308 -0.8424140
[2,] 0.8424140 0.5388308

D <- diag(result\$d) all.equal(A, result\$u %*% D %*% t(result\$v)) #CHECK</pre>

Example iv

Note: crossprod(A) == t(A) %*% A

- # tcrossprod(A) == A %*% t(A)
- U <- eigen(tcrossprod(A))\$vectors</pre>
- V <- eigen(crossprod(A))\$vectors</pre>

```
D <- matrix(0, nrow = 3, ncol = 2)
diag(D) <- result$d</pre>
```

all.equal(A, U %*% D %*% t(V)) # CHECK

[1] "Mean relative difference: 1.95887"

What went wrong?
Recall that eigenvectors are unique
only up to a sign!

These elements should all be positive
diag(t(U) %*% A %*% V)

[1] -2.8602018 0.6868562

Therefore we need to multiply the # corresponding columns of U or V # (but not both!) by -1 cols_flip <- which(diag(t(U) %*% A %*% V) < 0) V[,cols_flip] <- -V[,cols_flip]</pre>

all.equal(A, U %*% D %*% t(V)) # CHECK