Test for Covariances

Max Turgeon

STAT 7200-Multivariate Statistics

Objectives

- Review general theory of likelihood ratio tests
- Tests for structured covariance matrices
- Test for equality of multiple covariance matrices

Likelihood ratio tests i

- We will build our tests for covariances using likelihood ratios.
- Therefore, we quickly review the asymptotic theory for regular models.
- Let $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$ be a random sample from a density p_{θ} with parameter $\theta \in \mathbb{R}^{d}$.
- We are interested in the following hypotheses:

$$
H_{0}: \theta \in \Theta_{0}, \quad H_{1}: \theta \in \Theta_{1}
$$

where $\Theta_{i} \subseteq \mathbb{R}^{d}$.

Likelihood ratio tests ii

- Let $L(\theta)=\prod_{i=1}^{n} p_{\theta}\left(\mathbf{Y}_{i}\right)$ be the likelihood, and define the likelihood ratio

$$
\Lambda=\frac{\max _{\theta \in \Theta_{0}} L(\theta)}{\max _{\theta \in \Theta_{0} \cup \Theta_{1}} L(\theta)}
$$

- Recall: we reject the null hypothesis H_{0} for small values of Λ.

Likelihood ratio tests iii

Theorem (Van der Wandt, Chapter 16)
Assume Θ_{0}, Θ_{1} are locally linear. Under regularity conditions on p_{θ}, we have

$$
-2 \log \Lambda \rightarrow \chi^{2}(k)
$$

where k is the difference in the number of free parameters between the null model Θ_{0} and the unrestricted model $\Theta_{0} \cup \Theta_{1}$.

- Therefore, in practice, we need to count the number of free parameters in each model and hope the sample size n is large enough.

Tests for structured covariance matrices i

- We are going to look at several tests for structured covariance matrix.
- Throughout, we assume $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n} \sim N_{p}(\mu, \Sigma)$ with Σ positive definite.
- Like other exponential families, the multivariate normal distribution satisfies the regularity conditions of the theorem above.
- Being positive definite implies that the unrestricted parameter space is locally linear, i.e. we are staying away from the boundary where Σ is singular.

Tests for structured covariance matrices ii

- A few important observations about the unrestricted model:
- The number of free parameters is equal to the number of entries on and above the diagonal of Σ, which is $p(p+1) / 2$.
- The sample mean $\overline{\mathbf{Y}}$ maximises the likelihood independently of the structure of Σ.
- The maximised likelihood for the unrestricted model is given by

$$
L(\hat{\mathbf{Y}}, \hat{\Sigma})=\frac{\exp (-n p / 2)}{\left.\left.(2 \pi)^{n p / 2}\right|^{\hat{\Sigma}}\right|^{n / 2}}
$$

Specified covariance structure i

- We will start with the simplest hypothesis test:

$$
H_{0}: \Sigma=\Sigma_{0}
$$

- Note that there is no free parameter in the null model.
- Write $V=n \hat{\Sigma}$. Recall that we have

$$
L(\hat{\mathbf{Y}}, \Sigma)=(2 \pi)^{-n p / 2}|\Sigma|^{-n / 2} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} V\right)\right)
$$

Specified covariance structure ii

- Therefore, the likelihood ratio is given by

$$
\begin{aligned}
\Lambda & =\frac{(2 \pi)^{-n p / 2}\left|\Sigma_{0}\right|^{-n / 2} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma_{0}^{-1} V\right)\right)}{\exp (-n p / 2)(2 \pi)^{-n p / 2}|\hat{\Sigma}|^{-n / 2}} \\
& =\frac{\left|\Sigma_{0}\right|^{-n / 2} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma_{0}^{-1} V\right)\right)}{\exp (-n p / 2)\left|n^{-1} V\right|^{-n / 2}} \\
& =\left(\frac{e}{n}\right)^{n p / 2}\left|\Sigma_{0}^{-1} V\right|^{n / 2} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma_{0}^{-1} V\right)\right)
\end{aligned}
$$

- In particular, if $\Sigma_{0}=I_{p}$, we get

$$
\Lambda=\left(\frac{e}{n}\right)^{n p / 2}|V|^{n / 2} \exp \left(-\frac{1}{2} \operatorname{tr}(V)\right)
$$

Example i

library(tidyverse)
\# Winnipeg avg temperature
url <- paste0("https://maxturgeon.ca/w20-stat7200/", "winnipeg_temp.csv")
dataset <- read.csv(url) dataset[1:3,1:3]
\#\# temp_2010 temp_2011 temp_2012
\#\# 1 -25.57500 -16.25417 -6.379167
\#\# 2 -26.06250 -18.39583 -12.925000
\#\# 3 -20.56667 -19.45833 -5.791667

Example ii

```
n <- nrow(dataset)
p <- ncol(dataset)
V <- (n - 1)*cov(dataset)
# Diag = 14^2
# Corr = 0.8
Sigma0 <- diag(0.8, nrow = p)
diag(Sigma0) <- 1
Sigma0 <- 14^2*Sigma0
Sigma0_invXV <- solve(Sigma0, V)
```


Example iii

```
lrt <- 0.5*n*p*(1 - \(\log (n))\)
lrt <- lrt + 0.5*n*log(det(Sigma0_invXV))
lrt <- lrt - 0.5*sum(diag(Sigma0_invXV))
lrt <- -2*lrt
```

df <- choose(p + 1, 2)
c(lrt, qchisq(0.95, df))
\#\# [1] 5631.63409 73.31149

Test for sphericity i

- Sphericity means the different components of \mathbf{Y} are uncorrelated and have the same variance.
- In other words, we are looking at the following null hypothesis:

$$
H_{0}: \Sigma=\sigma^{2} I_{p}, \quad \sigma^{2}>0
$$

- Note that there is one free parameter.
- We have

$$
\begin{aligned}
L\left(\hat{\mathbf{Y}}, \sigma^{2} I_{p}\right) & =(2 \pi)^{-n p / 2}\left|\sigma^{2} I_{p}\right|^{-n / 2} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\left(\sigma^{2} I_{p}\right)^{-1} V\right)\right) \\
& =\left(2 \pi \sigma^{2}\right)^{-n p / 2} \exp \left(-\frac{1}{2 \sigma^{2}} \operatorname{tr}(V)\right)
\end{aligned}
$$

Test for sphericity ii

- Taking the derivative of the logarithm and setting it equal to zero, we find that $L\left(\hat{\mathbf{Y}}, \sigma^{2} I_{p}\right)$ is maximised when

$$
\widehat{\sigma^{2}}=\frac{\operatorname{tr} V}{n p}
$$

- We then get

$$
\begin{aligned}
L\left(\hat{\mathbf{Y}}, \widehat{\sigma^{2}} I_{p}\right) & =\left(2 \pi \widehat{\sigma^{2}}\right)^{-n p / 2} \exp \left(-\frac{1}{2 \widehat{\sigma^{2}}} \operatorname{tr}(V)\right) \\
& =(2 \pi)^{-n p / 2}\left(\frac{\operatorname{tr} V}{n p}\right)^{-n p / 2} \exp \left(-\frac{n p}{2}\right)
\end{aligned}
$$

Test for sphericity iii

- Therefore, we have

$$
\begin{aligned}
\Lambda & =\frac{(2 \pi)^{-n p / 2}\left(\frac{\operatorname{tr} V}{n p}\right)^{-n p / 2} \exp \left(-\frac{n p}{2}\right)}{\exp (-n p / 2)(2 \pi)^{-n p / 2}|\hat{\Sigma}|^{-n / 2}} \\
& =\frac{\left(\frac{\operatorname{tr} V}{n p}\right)^{-n p / 2}}{\left|n^{-1} V\right|^{-n / 2}} \\
& =\left(\frac{|V|}{(\operatorname{tr} V / p)^{p}}\right)^{n / 2} .
\end{aligned}
$$

Example (cont'd) i

lrt <- - 2*0.5*n*(log(det(V)) - p*log(mean(diag(V)))) df <- choose(p + 1, 2) - 1
c(lrt, qchisq(0.95, df))
\#\# [1] 5630.79458 72.15322

Test for sphericity (cont'd) i

- Recall that we have

$$
\Lambda=\left(\frac{|V|}{(\operatorname{tr} V / p)^{p}}\right)^{n / 2}
$$

- We can rewrite this as follows: let $l_{1} \geq \cdots \geq l_{p}$ be the eigenvalues of V. We have

$$
\begin{aligned}
\Lambda^{2 / n} & =\frac{|V|}{(\operatorname{tr} V / p)^{p}} \\
& =\frac{\prod_{j=1}^{p} l_{j}}{\left(\frac{1}{p} \sum_{j=1}^{p} l_{j}\right)^{p}} \\
& =\left(\frac{\prod_{j=1}^{p} l_{j}^{1 / p}}{\frac{1}{p} \sum_{j=1}^{p} l_{j}}\right)^{p} .
\end{aligned}
$$

Test for sphericity (cont'd) ii

- In other words, the modified LRT $\tilde{\Lambda}=\Lambda^{2 / n}$ is the ratio of the geometric to the arithmetic mean of the eigenvalues of V (all raised to the power p).
- A result of Srivastava and Khatri gives the exact distribution of $\tilde{\Lambda}$:

$$
\tilde{\Lambda}=\prod_{j=1}^{p-1} \mathcal{B}\left(\frac{1}{2}(n-j-1), j\left(\frac{1}{2}+\frac{1}{p}\right)\right)
$$

Example (cont'd) i

```
B <- 1000
df1 <- 0.5*(n - seq_len(p-1) - 1)
df2 <- seq_len(p-1)*(0.5 + 1/p)
\# Critical values
dist <- replicate(B, \{
    prod(rbeta(p-1, df1, df2))
    \})
```


Example (cont'd) ii

```
# Test statistic
decomp <- eigen(V, symmetric = TRUE, only.values = TRUE)
ar_mean <- mean(decomp$values)
geo_mean <- exp(mean(log(decomp$values)))
lrt_mod <- (geo_mean/ar_mean)^p
c(lrt_mod, quantile(dist, 0.95))
##
    95%
## 1.181561e-07 8.967361e-01
```


Test for independence i

- Decompose \mathbf{Y}_{i} into k blocks:

$$
\mathbf{Y}_{i}=\left(\mathbf{Y}_{1 i}, \ldots, \mathbf{Y}_{k i}\right)
$$

where $\mathbf{Y}_{j i} \sim N_{p_{j}}\left(\mu_{j}, \Sigma_{j j}\right)$ and $\sum_{j=1}^{k} p_{j}=p$.

- This induces a decomposition on Σ and V :

$$
\Sigma=\left(\begin{array}{ccc}
\Sigma_{11} & \cdots & \Sigma_{1 k} \\
\vdots & \ddots & \vdots \\
\Sigma_{k 1} & \cdots & \Sigma_{k k}
\end{array}\right), \quad V=\left(\begin{array}{ccc}
V_{11} & \cdots & V_{1 k} \\
\vdots & \ddots & \vdots \\
V_{k 1} & \cdots & V_{k k}
\end{array}\right) .
$$

Test for independence ii

- We are interested in testing for independence between the different blocks $\mathbf{Y}_{1 i}, \ldots, \mathbf{Y}_{k i}$. This equivalent to

$$
H_{0}: \Sigma=\left(\begin{array}{ccc}
\Sigma_{11} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \Sigma_{k k}
\end{array}\right)
$$

- Note that there are $\sum_{j=1}^{k} p_{j}\left(p_{j}+1\right) / 2$ free parameters.
- Under the null hypothesis, the likelihood can be decomposed into k likelihoods that can be maximised independently.

Test for independence iii

- This gives us

$$
\begin{aligned}
\max L(\hat{\mathbf{Y}}, \Sigma) & =\prod_{j=1}^{k} \frac{\exp \left(-n p_{j} / 2\right)}{(2 \pi)^{n p_{j} / 2}\left|\widehat{\Sigma_{j j}}\right|^{n / 2}} \\
& =\frac{\exp (-n p / 2)}{(2 \pi)^{n p / 2} \prod_{j=1}^{k}\left|\widehat{\Sigma_{j j}}\right|^{n / 2}}
\end{aligned}
$$

- Putting this together, we conclude that

$$
\Lambda=\left(\frac{|V|}{\prod_{j=1}^{k}\left|V_{j j}\right|}\right)^{n / 2}
$$

Example i

```
url <- paste0("https://maxturgeon.ca/w20-stat7200/",
        "blue_data.csv")
blue_data <- read.csv(url)
names(blue_data)
## [1] "NumSold"
"Price"
"AdvCost"
"SalesAs
dim(blue_data)
## [1] 10 4
```


Example ii

\# Let's test for independence between
\# all four variables
n <- nrow(blue_data)
p <- ncol(blue_data)

V <- (n-1)*cov(blue_data)
lrt <- - 2 *(log(det(V)) - sum(log(diag(V))))
df <- choose(p + 1, 2) - p
c(lrt, qchisq(0.95, df))

Example iii

\#\# [1] 5.63512412 .591587
lrt > qchisq(0.95, df)
\#\# [1] FALSE

Test for equality of covariances i

- We now look at a different setting: assume that we collected K independent random samples from (potentially) different p-dimensional multivariate normal distributions:

$$
\mathbf{Y}_{1 k}, \ldots, \mathbf{Y}_{n_{k} k} \sim N_{p}\left(\mu_{k}, \Sigma_{k}\right), \quad k=1, \ldots, K
$$

- We are interested in the null hypothesis that all Σ_{k} are equal to some unknown Σ :

$$
H_{0}: \Sigma_{k}=\Sigma, \quad \text { for all } k=1, \ldots, K
$$

Test for equality of covariances ii

- First, note that since the samples are independent, the full likelihood is the product of the likelihoods for each sample:

$$
L\left(\mu_{1}, \ldots, \mu_{K}, \Sigma_{1}, \ldots, \Sigma_{K}\right)=\prod_{k=1}^{K} L\left(\mu_{k}, \Sigma_{k}\right)
$$

- Therefore, over the unrestricted model, the maximum likelihood estimators are

$$
\left(\overline{\mathbf{Y}}_{k}, \hat{\Sigma}_{k}\right)
$$

- Note that the number of free parameters over the unrestricted model is $k p(p+1) / 2$.

Test for equality of covariances iii

- Now, over the null model, the full likelihood is still maximised when $\mu_{k}=\overline{\mathbf{Y}}_{k}$. Hence, we get

$$
\begin{aligned}
& L\left(\overline{\mathbf{Y}}_{1}, \ldots, \overline{\mathbf{Y}}_{K}, \Sigma, \ldots, \Sigma\right)=\prod_{k=1}^{K} L\left(\overline{\mathbf{Y}}_{K}, \Sigma\right) \\
& \quad=\prod_{k=1}^{K}(2 \pi)^{-n_{k} p / 2}|\Sigma|^{-n_{k} / 2} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} V_{k}\right)\right)
\end{aligned}
$$

where $V_{k}=n_{k} \hat{\Sigma}_{k}$.

- Writing $n=\sum_{k=1}^{K} n_{k}$ and $V=\sum_{k=1}^{K} V_{k}$, we get

$$
\begin{aligned}
& L\left(\overline{\mathbf{Y}}_{1}, \ldots, \overline{\mathbf{Y}}_{K}, \Sigma, \ldots, \Sigma\right)= \\
& \quad=(2 \pi)^{-n p / 2}|\Sigma|^{-n / 2} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} V\right)\right)
\end{aligned}
$$

Test for equality of covariances iv

- This is the same expression as the one we would get by pooling all the samples together. Therefore, the maximum likelihood estimate is

$$
\hat{\Sigma}=\frac{1}{n} V .
$$

- Note that under the null model, there are $p(p+1) / 2$ free parameters.

Test for equality of covariances v

- We can now compute the likelihood ratio:

$$
\begin{aligned}
\Lambda & =\frac{L\left(\overline{\mathbf{Y}}_{1}, \ldots, \overline{\mathbf{Y}}_{K}, \hat{\Sigma}, \ldots, \hat{\Sigma}\right)}{L\left(\overline{\mathbf{Y}}_{1}, \ldots, \overline{\mathbf{Y}}_{K}, \hat{\Sigma}_{1}, \ldots, \hat{\Sigma}_{K}\right)} \\
& =\frac{(2 \pi)^{-n p / 2} \exp (-n p / 2)|\hat{\Sigma}|^{-n / 2}}{\left.\prod_{k=1}^{K}(2 \pi)^{-n_{k} p / 2} \exp \left(-n_{k} p / 2\right) \hat{\Sigma}_{k}\right|^{-n_{k} / 2}} \\
& =\frac{(2 \pi)^{-n p / 2} \exp (-n p / 2)|\hat{\Sigma}|^{-n / 2}}{(2 \pi)^{-n p / 2} \exp (-n p / 2) \prod_{k=1}^{K}\left|\hat{\Sigma}_{k}\right|^{-n_{k} / 2}} \\
& =\frac{|\hat{\Sigma}|^{-n / 2}}{\prod_{k=1}^{K}\left|\hat{\Sigma}_{k}\right|^{-n_{k} / 2}}
\end{aligned}
$$

Test for equality of covariances vi

- In other words, the likelihood ratio test compares the generalized variance of the pooled covariance with the product of the generalized variances of the individuals covariances.
- From the general theory of LRTs, we get

$$
-2 \log \Lambda \approx \chi^{2}\left(\frac{(K-1) p(p+1)}{2}\right)
$$

Test for equality of covariances vii

\#\# Example on producing plastic film
\#\# from Krzanowski (1998, p. 381)
tear <- c $(6.5,6.2,5.8,6.5,6.5,6.9,7.2$,

$$
\begin{aligned}
& 6.9,6.1,6.3,6.7,6.6,7.2,7.1, \\
& 6.8,7.1,7.0,7.2,7.5,7.6)
\end{aligned}
$$

gloss <- c(9.5, 9.9, 9.6. 9.6. 9.2, 9.1, 10.0,
$9.9,9.5,9.4,9.1,9.3,8.3,8.4$,
8.5, 9.2, 8.8, 9.7, 10.1, 9.2)
opacity <- c $(4.4,6.4,3.0,4.1,0.8,5.7,2.0$,

$$
\begin{aligned}
& 3.9,1.9,5.7,2.8,4.1,3.8,1.6, \\
& 3.4,8.4,5.2,6.9,2.7,1.9)
\end{aligned}
$$

Test for equality of covariances viii

$$
\begin{aligned}
& \text { Y <- cbind(tear, gloss, opacity) } \\
& \text { Y_low <- Y[1:10,] } \\
& \text { Y_high <- Y[11:20,] } \\
& n<-\operatorname{nrow}(Y) ; ~ p<- \text { ncol(Y); K <- } 2 \\
& \text { n1 <- n2 <- nrow(Y_low) }
\end{aligned}
$$

Test for equality of covariances ix

```
Sig_low <- (n1 - 1)*cov(Y_low)/n1
Sig_high <- (n2 - 1)*cov(Y_high)/n2
Sig_pool <- (n1*Sig_low + n2*Sig_high)/n
c("pool" = log(det(Sig_pool)),
    "low" = log(det(Sig_low)),
    "high" = log(det(Sig_high)))
\begin{tabular}{lrrr} 
\#\# & pool & low & high \\
\#\# & -2.524791 & -3.265178 & -2.329143
\end{tabular}
```


Test for equality of covariances x

```
lrt <- n*log(det(Sig_pool)) -
    n1*log(det(Sig_low)) -
    n2*log(det(Sig_high))
df <- (K - 1)*choose(p + 1, 2)
c(lrt, qchisq(0.95, df))
```

\#\# [1] 5.44739612 .591587

Box's M test i

- There are a few ways to get a better approximation of the null distribution of Λ. First, note that we can rewrite it as

$$
\Lambda=\frac{\prod_{k=1}^{K}\left|V_{k}\right|^{n_{k} / 2}}{|V|^{n / 2}} \frac{n^{p n / 2}}{\prod_{k=1}^{K} n_{k}^{p n_{k} / 2}}
$$

- We can create an unbiased test (i.e. it has the correct asymptotic expectation) by replacing n_{k} by $n_{k}-1$ and n with $n-K$:

$$
\Lambda^{*}=\frac{\prod_{k=1}^{K}\left|V_{k}\right|^{\left(n_{k}-1\right) / 2}}{|V|^{(n-K) / 2}} \frac{(n-K)^{p(n-K) / 2}}{\prod_{k=1}^{K}\left(n_{k}-1\right)^{p\left(n_{k}-1\right) / 2}}
$$

- This is equivalent to replacing $\hat{\Sigma}_{k}$ by the sample covariances S_{k}.

Box's M test ii

- Note that we still have the same asymptotic result:

$$
-2 \log \Lambda^{*} \approx \chi^{2}\left(\frac{(K-1) p(p+1)}{2}\right)
$$

- Box showed that you can further improve the approximation by multiplying the test statistic by a constant. Set

$$
u=\left(\sum_{k=1}^{K} \frac{1}{n_{k}-1}-\frac{1}{n-K}\right)\left(\frac{2 p^{2}+3 p-1}{6(p+1)(K-1)}\right)
$$

- Then we have

$$
-2(1-u) \log \Lambda^{*} \approx \chi^{2}\left(\frac{(K-1) p(p+1)}{2}\right)
$$

Example (cont'd) i

S_low <- cov(Y_low)
S_high <- cov(Y_high)
S_pool <- ((n1 - 1)*S_low + (n2 - 1)*S_high)/(n - K)
lrt2 <- (n - K)*log(det(S_pool)) -
(n1 - 1)*log(det(S_low)) -
(n2 - 1)*log(det(S_high))
c(lrt, lrt2, qchisq(0.95, df))
\#\# [1] 5.4473964 .90265712 .591587

Example (cont'd) ii

$$
\begin{aligned}
& u<-\left(2 * p^{\wedge} 2+3 * p-1\right) /(6 *(p+1) *(K-1)) \\
& u<-u *\left((n 1-1)^{\wedge}\{-1\}+(n 2-1)^{\wedge}\{-1\}-(n-K)^{\wedge}\{-1\}\right) \\
& \operatorname{lrt} 3<-\operatorname{lrt} 2 *(1-u)
\end{aligned}
$$

c(lrt, lrt2, lrt3, qchisq(0.95, df))
\#\# [1] 5.4473964 .9026574 .01745512 .591587

Visualization i

\# You can also visualize the covariances---library(heplots)
rate <- gl(K, 10, labels = c("Low", "High"))
boxm_res <- boxM(Y, rate)
\# You can plot the log generalized variances
\# The plot function adds 95\% CI
plot(boxm_res)

Visualization ii

Visualization iii

```
# Finally you can also plot the ellipses
# as a way to compare the covariances
covEllipses(Y, rate, center = TRUE,
    label.pos = 'bottom')
```


Visualization iv

Visualization v

```
# Or all pairwise comparisons together
covEllipses(Y, rate, center = TRUE,
    label.pos = 'bottom',
    variables = 1:3)
```


Visualization vi

Asymptotic expansions for likelihood ratio tests i

- Box's correction of the LRT for equality of covariances is part of a general theory of asymptotic expansions for LRTs.
- The frameword allows for approximations of the null distribution of some LRTs to any degrees of accuracy.
- We won't go into the details of such expansions, but we will look at one example.
- If you want more details, see this:
https://maxturgeon.ca/w20-stat7200/test-sphericity-details.pdf

Asymptotic expansions for likelihood ratio tests ii

- In the context of the test for sphericity, the approximation result looks like this:

$$
-2\left(\frac{6 p(n-1)-\left(2 p^{2}+p+2\right)}{6 p n}\right) \log \Lambda \approx \chi^{2}\left(\frac{1}{2} p(p+1)-1\right)
$$

where Λ is the likelihood ratio.

- This is known also known as Bartlett's correction.
- Note that we are correcting both the test statistic (by multiplying by a positive constant) and the degrees of freedom (we lose one degree of freedom).

Simulation i

```
set.seed(7200)
# Simulation parameters
n <- 10
p <- 2
B <- 1000
```


Simulation ii

```
# Generate data
lrt_dist <- replicate(B, {
    Y <- matrix(rnorm(n*p), ncol = p)
    V <- crossprod(Y)
    # log Lambda
    0.5*n*(log(det(V)) - p*log(mean(diag(V))))
})
```

\# General asymptotic result
df <- choose(p + 1, 2)
general_chisq <- rchisq(B, df = df)

Simulation iii

\# Bartlett's correction
df <- choose(p + 1, 2) - 1
const <- (6*p*(n-1) - ($\left.\left.2 * p^{\wedge} 2+p+2\right)\right) /(6 * p * n)$
bartlett_chisq <- rchisq(B, df = df)/const

Simulation iv

\# Plot empirical CDFs
plot(ecdf(-2*lrt_dist), main $=$ "-2 log Lambda")
lines(ecdf(general_chisq), col = 'blue')
lines(ecdf(bartlett_chisq), col = 'red')
legend('bottomright',

$$
\begin{aligned}
& \text { legend }= c("-2 l o g ~ L a m b d a ", ~ " G e n e r a l ~ a p p r o x . ", ~ \\
& \text { "Bartlett"), } \\
&\text { lty }=1, \text { col }=c(' b l a c k ', ~ ' b l u e ', ~ ' r e d ')) ~
\end{aligned}
$$

Simulation v

-2 \log Lambda

Sketch of a proof i

- Here is an outline of how you could get such an approximation:
- First, we can compute the moments of the likelihood ratio: given h, we have

$$
E\left(\Lambda^{2 h / n}\right)=p^{p h} \frac{\Gamma\left(\frac{1}{2}(n-1) p\right)}{\Gamma\left(\frac{1}{2}(n-1) p+p h\right)} \frac{\Gamma_{p}\left(\frac{1}{2}(n-1)+h\right)}{\Gamma_{p}\left(\frac{1}{2}(n-1)\right)} .
$$

- Next, we can use this expression to get an expression for the characteristic function of $\rho M=-2 \rho \log \Lambda^{(n-1) / n}$:

$$
\varphi_{\rho M}(t)=E(\exp (i t \rho M))=E\left(\Lambda^{-2 i t \rho(n-1) / n}\right)
$$

Sketch of a proof ii

- Therefore, if we take $h=-i t \rho(n-1)$, we can see that the characteristic function $\varphi_{\rho M}(t)$ is a product of gamma functions.
- The cumulant function, which is the logarithm of the characteristic function, is therefore a sum of logarithms of gamma functions.
- Why do we care? We can use Stirling's approximation to approximate the logarithm of gamma functions to any degree of precision.
- This approximation of the cumulant function gives rise to an approximation of the characteristic function. For order 2, we get:

$$
\varphi_{\rho M}(t) \approx(1-2 i t)^{-f / 2}+\omega_{1}\left((1-2 i t)^{-(f+2) / 2}-(1-2 i t)^{-f / 2}\right)
$$

Sketch of a proof iii

- Recall that the characteristic function of $\chi^{2}(d)$ is $(1-2 i t)^{-d / 2}$. Therefore, we can "invert" our approximation of $\varphi_{\rho M}(t)$ to get an approximation of the density and the distribution of ρM.
- Moreover, we can choose ρ in such a way that $\omega_{1}=0$, which gives a chi-square approximation that is more accurate than the general asymptotic theory.

Summary

- We built tests for structured covariance matrices using likelihood ratio tests.
- We also built a test for equality of covariance, when we have multiple samples.
- We briefly discussed asymptotic expansions and how they can give rise to better approximations of the likelihood ratio test statistics.

