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Objectives

• Review general theory of likelihood ratio tests
• Tests for structured covariance matrices
• Test for equality of multiple covariance matrices
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Likelihood ratio tests i

• We will build our tests for covariances using likelihood ratios.

• Therefore, we quickly review the asymptotic theory for regular
models.

• Let Y1, . . . , Yn be a random sample from a density pθ with
parameter θ ∈ Rd.

• We are interested in the following hypotheses:

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1,

where Θi ⊆ Rd.
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Likelihood ratio tests ii

• Let L(θ) = ∏n
i=1 pθ(Yi) be the likelihood, and define the

likelihood ratio

Λ = maxθ∈Θ0 L(θ)
maxθ∈Θ0∪Θ1 L(θ)

.

• Recall: we reject the null hypothesis H0 for small values of Λ.

4



Likelihood ratio tests iii

Theorem (Van der Wandt, Chapter 16)
Assume Θ0, Θ1 are locally linear. Under regularity conditions on pθ ,
we have

−2 log Λ → χ2(k),

where k is the difference in the number of free parameters between
the null model Θ0 and the unrestricted model Θ0 ∪ Θ1.

• Therefore, in practice, we need to count the number of free
parameters in each model and hope the sample size n is large
enough.
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Tests for structured covariance matrices i

• We are going to look at several tests for structured covariance
matrix.

• Throughout, we assume Y1, . . . , Yn ∼ Np(µ, Σ) with Σ
positive definite.

• Like other exponential families, the multivariate normal
distribution satisfies the regularity conditions of the theorem
above.

• Being positive definite implies that the unrestricted parameter
space is locally linear, i.e. we are staying away from the
boundary where Σ is singular.
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Tests for structured covariance matrices ii

• A few important observations about the unrestricted model:

• The number of free parameters is equal to the number of
entries on and above the diagonal of Σ, which is p(p + 1)/2.

• The sample mean Ȳ maximises the likelihood independently of
the structure of Σ.

• The maximised likelihood for the unrestricted model is given by

L(Ŷ, Σ̂) = exp(−np/2)
(2π)np/2|Σ̂|n/2

.
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Specified covariance structure i

• We will start with the simplest hypothesis test:

H0 : Σ = Σ0.

• Note that there is no free parameter in the null model.
• Write V = nΣ̂. Recall that we have

L(Ŷ, Σ) = (2π)−np/2|Σ|−n/2 exp
(

−1
2

tr(Σ−1V )
)

.
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Specified covariance structure ii

• Therefore, the likelihood ratio is given by

Λ =
(2π)−np/2|Σ0|−n/2 exp

(
−1

2tr(Σ−1
0 V )

)
exp(−np/2)(2π)−np/2|Σ̂|−n/2

=
|Σ0|−n/2 exp

(
−1

2tr(Σ−1
0 V )

)
exp(−np/2)|n−1V |−n/2

=
(

e

n

)np/2
|Σ−1

0 V |n/2 exp
(

−1
2

tr(Σ−1
0 V )

)
.

• In particular, if Σ0 = Ip, we get

Λ =
(

e

n

)np/2
|V |n/2 exp

(
−1

2
tr(V )

)
.
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Example i

library(tidyverse)
# Winnipeg avg temperature
url <- paste0(”https://maxturgeon.ca/w20-stat7200/”,

”winnipeg_temp.csv”)
dataset <- read.csv(url)
dataset[1:3,1:3]

## temp_2010 temp_2011 temp_2012
## 1 -25.57500 -16.25417 -6.379167
## 2 -26.06250 -18.39583 -12.925000
## 3 -20.56667 -19.45833 -5.791667
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Example ii

n <- nrow(dataset)
p <- ncol(dataset)

V <- (n - 1)*cov(dataset)

# Diag = 14^2
# Corr = 0.8
Sigma0 <- diag(0.8, nrow = p)
diag(Sigma0) <- 1
Sigma0 <- 14^2*Sigma0
Sigma0_invXV <- solve(Sigma0, V)
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Example iii

lrt <- 0.5*n*p*(1 - log(n))
lrt <- lrt + 0.5*n*log(det(Sigma0_invXV))
lrt <- lrt - 0.5*sum(diag(Sigma0_invXV))
lrt <- -2*lrt

df <- choose(p + 1, 2)
c(lrt, qchisq(0.95, df))

## [1] 5631.63409 73.31149
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Test for sphericity i

• Sphericity means the different components of Y are
uncorrelated and have the same variance.

• In other words, we are looking at the following null hypothesis:

H0 : Σ = σ2Ip, σ2 > 0.

• Note that there is one free parameter.

• We have

L(Ŷ, σ2Ip) = (2π)−np/2|σ2Ip|−n/2 exp
(

−1
2

tr((σ2Ip)−1V )
)

= (2πσ2)−np/2 exp
(

− 1
2σ2 tr(V )

)
.
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Test for sphericity ii

• Taking the derivative of the logarithm and setting it equal to
zero, we find that L(Ŷ, σ2Ip) is maximised when

σ̂2 = trV
np

.

• We then get

L(Ŷ, σ̂2Ip) = (2πσ̂2)−np/2 exp
(

− 1
2σ̂2

tr(V )
)

= (2π)−np/2
(

trV
np

)−np/2

exp
(

−np

2

)
.
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Test for sphericity iii

• Therefore, we have

Λ =
(2π)−np/2

(
trV
np

)−np/2
exp

(
−np

2

)
exp(−np/2)(2π)−np/2|Σ̂|−n/2

=

(
trV
np

)−np/2

|n−1V |−n/2

=
(

|V |
(trV/p)p

)n/2

.
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Example (cont’d) i

lrt <- -2*0.5*n*(log(det(V)) - p*log(mean(diag(V))))
df <- choose(p + 1, 2) - 1

c(lrt, qchisq(0.95, df))

## [1] 5630.79458 72.15322
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Test for sphericity (cont’d) i

• Recall that we have

Λ =
(

|V |
(trV/p)p

)n/2

.

• We can rewrite this as follows: let l1 ≥ · · · ≥ lp be the
eigenvalues of V . We have

Λ2/n = |V |
(trV/p)p

=
∏p

j=1 lj

(1
p

∑p
j=1 lj)p

=

∏p
j=1 l

1/p
j

1
p

∑p
j=1 lj

p

.
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Test for sphericity (cont’d) ii

• In other words, the modified LRT Λ̃ = Λ2/n is the ratio of the
geometric to the arithmetic mean of the eigenvalues of V (all
raised to the power p).

• A result of Srivastava and Khatri gives the exact distribution of
Λ̃:

Λ̃ =
p−1∏
j=1

B
(

1
2

(n − j − 1), j

(
1
2

+ 1
p

))
.
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Example (cont’d) i

B <- 1000
df1 <- 0.5*(n - seq_len(p-1) - 1)
df2 <- seq_len(p-1)*(0.5 + 1/p)

# Critical values
dist <- replicate(B, {

prod(rbeta(p-1, df1, df2))
})
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Example (cont’d) ii

# Test statistic
decomp <- eigen(V, symmetric = TRUE, only.values = TRUE)
ar_mean <- mean(decomp$values)
geo_mean <- exp(mean(log(decomp$values)))

lrt_mod <- (geo_mean/ar_mean)^p

c(lrt_mod, quantile(dist, 0.95))

## 95%
## 1.181561e-07 8.967361e-01
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Test for independence i

• Decompose Yi into k blocks:

Yi = (Y1i, . . . , Yki),

where Yji ∼ Npj
(µj, Σjj) and

∑k
j=1 pj = p.

• This induces a decomposition on Σ and V :

Σ =


Σ11 · · · Σ1k

...
. . .

...
Σk1 · · · Σkk

 , V =


V11 · · · V1k

...
. . .

...
Vk1 · · · Vkk

 .
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Test for independence ii

• We are interested in testing for independence between the
different blocks Y1i, . . . , Yki. This equivalent to

H0 : Σ =


Σ11 · · · 0
...

. . .
...

0 · · · Σkk

 .

• Note that there are
∑k

j=1 pj(pj + 1)/2 free parameters.

• Under the null hypothesis, the likelihood can be decomposed
into k likelihoods that can be maximised independently.
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Test for independence iii

• This gives us

max L(Ŷ, Σ) =
k∏

j=1

exp(−npj/2)
(2π)npj/2|Σ̂jj|n/2

= exp(−np/2)
(2π)np/2∏k

j=1|Σ̂jj|n/2
.

• Putting this together, we conclude that

Λ =
(

|V |∏k
j=1|Vjj|

)n/2

.
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Example i

url <- paste0(”https://maxturgeon.ca/w20-stat7200/”,
”blue_data.csv”)

blue_data <- read.csv(url)
names(blue_data)

## [1] ”NumSold” ”Price” ”AdvCost” ”SalesAssist”

dim(blue_data)

## [1] 10 4
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Example ii

# Let's test for independence between
# all four variables
n <- nrow(blue_data)
p <- ncol(blue_data)

V <- (n-1)*cov(blue_data)
lrt <- -2*(log(det(V)) - sum(log(diag(V))))

df <- choose(p + 1, 2) - p
c(lrt, qchisq(0.95, df))
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Example iii

## [1] 5.635124 12.591587

lrt > qchisq(0.95, df)

## [1] FALSE
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Test for equality of covariances i

• We now look at a different setting: assume that we collected K

independent random samples from (potentially) different
p-dimensional multivariate normal distributions:

Y1k, . . . , Ynkk ∼ Np(µk, Σk), k = 1, . . . , K.

• We are interested in the null hypothesis that all Σk are equal to
some unknown Σ:

H0 : Σk = Σ, for all k = 1, . . . , K.
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Test for equality of covariances ii

• First, note that since the samples are independent, the full
likelihood is the product of the likelihoods for each sample:

L(µ1, . . . , µK , Σ1, . . . , ΣK) =
K∏

k=1
L(µk, Σk).

• Therefore, over the unrestricted model, the maximum likelihood
estimators are

(Ȳk, Σ̂k).

• Note that the number of free parameters over the unrestricted
model is kp(p + 1)/2.
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Test for equality of covariances iii

• Now, over the null model, the full likelihood is still maximised
when µk = Ȳk . Hence, we get

L(Ȳ1, . . . , ȲK , Σ, . . . , Σ) =
K∏

k=1
L(ȲK , Σ)

=
K∏

k=1
(2π)−nkp/2|Σ|−nk/2 exp

(
−1

2
tr(Σ−1Vk)

)
,

where Vk = nkΣ̂k .
• Writing n = ∑K

k=1 nk and V = ∑K
k=1 Vk , we get

L(Ȳ1, . . . , ȲK , Σ, . . . , Σ) =

= (2π)−np/2|Σ|−n/2 exp
(

−1
2

tr(Σ−1V )
)

.
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Test for equality of covariances iv

• This is the same expression as the one we would get by pooling
all the samples together. Therefore, the maximum likelihood
estimate is

Σ̂ = 1
n

V.

• Note that under the null model, there are p(p + 1)/2 free
parameters.
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Test for equality of covariances v

• We can now compute the likelihood ratio:

Λ = L(Ȳ1, . . . , ȲK , Σ̂, . . . , Σ̂)
L(Ȳ1, . . . , ȲK , Σ̂1, . . . , Σ̂K)

= (2π)−np/2 exp(−np/2)|Σ̂|−n/2∏K
k=1(2π)−nkp/2 exp(−nkp/2)|Σ̂k|−nk/2

= (2π)−np/2 exp(−np/2)|Σ̂|−n/2

(2π)−np/2 exp(−np/2)∏K
k=1|Σ̂k|−nk/2

= |Σ̂|−n/2∏K
k=1|Σ̂k|−nk/2

.
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Test for equality of covariances vi

• In other words, the likelihood ratio test compares the
generalized variance of the pooled covariance with the product
of the generalized variances of the individuals covariances.

• From the general theory of LRTs, we get

−2 log Λ ≈ χ2
(

(K − 1)p(p + 1)
2

)
.

32



Test for equality of covariances vii

## Example on producing plastic film
## from Krzanowski (1998, p. 381)
tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2,

6.9, 6.1, 6.3, 6.7, 6.6, 7.2, 7.1,
6.8, 7.1, 7.0, 7.2, 7.5, 7.6)

gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.0,
9.9, 9.5, 9.4, 9.1, 9.3, 8.3, 8.4,
8.5, 9.2, 8.8, 9.7, 10.1, 9.2)

opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0,
3.9, 1.9, 5.7, 2.8, 4.1, 3.8, 1.6,
3.4, 8.4, 5.2, 6.9, 2.7, 1.9)
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Test for equality of covariances viii

Y <- cbind(tear, gloss, opacity)
Y_low <- Y[1:10,]
Y_high <- Y[11:20,]
n <- nrow(Y); p <- ncol(Y); K <- 2
n1 <- n2 <- nrow(Y_low)
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Test for equality of covariances ix

Sig_low <- (n1 - 1)*cov(Y_low)/n1
Sig_high <- (n2 - 1)*cov(Y_high)/n2
Sig_pool <- (n1*Sig_low + n2*Sig_high)/n

c(”pool” = log(det(Sig_pool)),
”low” = log(det(Sig_low)),
”high” = log(det(Sig_high)))

## pool low high
## -2.524791 -3.265178 -2.329143
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Test for equality of covariances x

lrt <- n*log(det(Sig_pool)) -
n1*log(det(Sig_low)) -
n2*log(det(Sig_high))

df <- (K - 1)*choose(p + 1, 2)
c(lrt, qchisq(0.95, df))

## [1] 5.447396 12.591587
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Box’s M test i

• There are a few ways to get a better approximation of the null
distribution of Λ. First, note that we can rewrite it as

Λ =
∏K

k=1|Vk|nk/2

|V |n/2
npn/2∏K

k=1 n
pnk/2
k

.

• We can create an unbiased test (i.e. it has the correct asymptotic
expectation) by replacing nk by nk − 1 and n with n − K :

Λ∗ =
∏K

k=1|Vk|(nk−1)/2

|V |(n−K)/2
(n − K)p(n−K)/2∏K

k=1(nk − 1)p(nk−1)/2 .

• This is equivalent to replacing Σ̂k by the sample covariances Sk .
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Box’s M test ii

• Note that we still have the same asymptotic result:

−2 log Λ∗ ≈ χ2
(

(K − 1)p(p + 1)
2

)
.

• Box showed that you can further improve the approximation by
multiplying the test statistic by a constant. Set

u =
(

K∑
k=1

1
nk − 1

− 1
n − K

)(
2p2 + 3p − 1

6(p + 1)(K − 1)

)
.

• Then we have

−2(1 − u) log Λ∗ ≈ χ2
(

(K − 1)p(p + 1)
2

)
.
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Example (cont’d) i

S_low <- cov(Y_low)
S_high <- cov(Y_high)
S_pool <- ((n1 - 1)*S_low + (n2 - 1)*S_high)/(n - K)

lrt2 <- (n - K)*log(det(S_pool)) -
(n1 - 1)*log(det(S_low)) -
(n2 - 1)*log(det(S_high))

c(lrt, lrt2, qchisq(0.95, df))

## [1] 5.447396 4.902657 12.591587
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Example (cont’d) ii

u <- (2*p^2 + 3*p - 1)/(6*(p + 1)*(K - 1))
u <- u * ((n1 - 1)^{-1} + (n2 - 1)^{-1} - (n - K)^{-1})
lrt3 <- lrt2*(1 - u)

c(lrt, lrt2, lrt3, qchisq(0.95, df))

## [1] 5.447396 4.902657 4.017455 12.591587
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Visualization i

# You can also visualize the covariances----
library(heplots)
rate <- gl(K, 10, labels = c(”Low”, ”High”))
boxm_res <- boxM(Y, rate)

# You can plot the log generalized variances
# The plot function adds 95% CI
plot(boxm_res)
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Visualization ii
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Visualization iii

# Finally you can also plot the ellipses
# as a way to compare the covariances
covEllipses(Y, rate, center = TRUE,

label.pos = 'bottom')
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Visualization iv
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Visualization v

# Or all pairwise comparisons together
covEllipses(Y, rate, center = TRUE,

label.pos = 'bottom',
variables = 1:3)
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Visualization vi
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Asymptotic expansions for likelihood ratio tests i

• Box’s correction of the LRT for equality of covariances is part of
a general theory of asymptotic expansions for LRTs.

• The frameword allows for approximations of the null
distribution of some LRTs to any degrees of accuracy.

• We won’t go into the details of such expansions, but we will look
at one example.

• If you want more details, see this:
https://maxturgeon.ca/w20-stat7200/test-
sphericity-details.pdf
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Asymptotic expansions for likelihood ratio tests ii

• In the context of the test for sphericity, the approximation result
looks like this:

−2
(

6p(n − 1) − (2p2 + p + 2)
6pn

)
log Λ ≈ χ2

(1
2

p(p + 1) − 1
)

,

where Λ is the likelihood ratio.
• This is known also known as Bartlett’s correction.

• Note that we are correcting both the test statistic (by
multiplying by a positive constant) and the degrees of freedom
(we lose one degree of freedom).
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Simulation i

set.seed(7200)

# Simulation parameters
n <- 10
p <- 2
B <- 1000
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Simulation ii

# Generate data
lrt_dist <- replicate(B, {

Y <- matrix(rnorm(n*p), ncol = p)
V <- crossprod(Y)
# log Lambda
0.5*n*(log(det(V)) - p*log(mean(diag(V))))

})

# General asymptotic result
df <- choose(p + 1, 2)
general_chisq <- rchisq(B, df = df)

50



Simulation iii

# Bartlett's correction
df <- choose(p + 1, 2) - 1
const <- (6*p*(n-1) - (2*p^2 + p + 2))/(6*p*n)
bartlett_chisq <- rchisq(B, df = df)/const

51



Simulation iv

# Plot empirical CDFs
plot(ecdf(-2*lrt_dist), main = ”-2 log Lambda”)
lines(ecdf(general_chisq), col = 'blue')
lines(ecdf(bartlett_chisq), col = 'red')
legend('bottomright',

legend = c(”-2log Lambda”, ”General approx.”,
”Bartlett”),

lty = 1, col = c('black', 'blue', 'red'))
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Simulation v
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Sketch of a proof i

• Here is an outline of how you could get such an approximation:
• First, we can compute the moments of the likelihood ratio:
given h, we have

E
(
Λ2h/n

)
= pph

Γ
(

1
2(n − 1)p

)
Γ
(

1
2(n − 1)p + ph

) Γp

(
1
2(n − 1) + h

)
Γp

(
1
2(n − 1)

) .

• Next, we can use this expression to get an expression for the
characteristic function of ρM = −2ρ log Λ(n−1)/n:

φρM(t) = E(exp(itρM)) = E
(
Λ−2itρ(n−1)/n

)
.
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Sketch of a proof ii

• Therefore, if we take h = −itρ(n − 1), we can see that the
characteristic function φρM(t) is a product of gamma functions.

• The cumulant function, which is the logarithm of the
characteristic function, is therefore a sum of logarithms of
gamma functions.

• Why do we care? We can use Stirling’s approximation to
approximate the logarithm of gamma functions to any degree of
precision.

• This approximation of the cumulant function gives rise to an
approximation of the characteristic function. For order 2, we get:

φρM(t) ≈ (1−2it)−f/2+ω1
(
(1 − 2it)−(f+2)/2 − (1 − 2it)−f/2

)
.
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Sketch of a proof iii

• Recall that the characteristic function of χ2(d) is (1 − 2it)−d/2.
Therefore, we can “invert” our approximation of φρM(t) to get
an approximation of the density and the distribution of ρM .

• Moreover, we can choose ρ in such a way that ω1 = 0, which
gives a chi-square approximation that is more accurate than the
general asymptotic theory.
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Summary

• We built tests for structured covariance matrices using
likelihood ratio tests.

• We also built a test for equality of covariance, when we have
multiple samples.

• We briefly discussed asymptotic expansions and how they can
give rise to better approximations of the likelihood ratio test
statistics.
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