Wishart Distribution

Max Turgeon
STAT 7200-Multivariate Statistics

Objectives

- Understand the distribution of covariance matrices
- Understand the distribution of the MLEs for the multivariate normal distribution
- Understand the distribution of functionals of covariance matrices
- Visualize covariance matrices and their distribution

Before we begin...

- In this section, we will discuss random matrices
- Therefore, we will talk about distributions, derivatives and integrals over sets of matrices
- It can be useful to identify the space $M_{n, p}(\mathbb{R})$ of $n \times p$ matrices with $\mathbb{R}^{n p}$.
- We can define the function vec $: M_{n, p}(\mathbb{R}) \rightarrow \mathbb{R}^{n p}$ that takes a matrix M and maps it to the $n p$-dimensional vector given by concatenating the columns of M into a single vector.

$$
\operatorname{vec}\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)=(1,2,3,4)
$$

Before we begin...

- Another important observation: structural constraints (e.g. symmetry, positive definiteness) reduce the number of "free" entries in a matrix and therefore the dimension of the subspace.
- E.g. If A is a symmetric $p \times p$ matrix, there are only $\frac{1}{2} p(p+1)$ independent entries: the entries on the diagonal, and the off-diagonal entries above the diagonal (or below).

Wishart distribution i

- Let S be a random, positive semidefinite matrix of dimension $p \times p$.
- We say S follows a standard Wishart distribution $W_{p}(m)$ if we can write

$$
S=\sum_{i=1}^{m} \mathbf{Z}_{i} \mathbf{Z}_{i}^{T}, \quad \mathbf{Z}_{i} \sim N_{p}\left(0, I_{p}\right) \text { indep.. }
$$

- We say S follows a Wishart distribution $W_{p}(m, \Sigma)$ with scale matrix Σ if we can write

$$
S=\sum_{i=1}^{m} \mathbf{Y}_{i} \mathbf{Y}_{i}^{T}, \quad \mathbf{Y}_{i} \sim N_{p}(0, \Sigma) \text { indep.. }
$$

Wishart distribution if

- We say S follows a non-central Wishart distribution $W_{p}(m, \Sigma ; \Delta)$ with scale matrix Σ and non-centrality parameter Δ if we can write
$S=\sum_{i=1}^{m} \mathbf{Y}_{i} \mathbf{Y}_{i}^{T}, \quad \mathbf{Y}_{i} \sim N_{p}\left(\mu_{i}, \Sigma\right)$ indep.,$\quad \Delta=\sum_{i=1}^{m} \mu_{i} \mu_{i}^{T}$.

Example i

- Let $S \sim W_{p}(m)$ be Wishart distributed, with scale matrix $\Sigma=I_{p}$.
- We can therefore write $S=\sum_{i=1}^{m} \mathbf{Z}_{i} \mathbf{Z}_{i}^{T}$, with

$$
\mathbf{Z}_{i} \sim N_{p}\left(0, I_{p}\right)
$$

Example if

- Using the properties of the trace, we have

$$
\begin{aligned}
\operatorname{tr}(S) & =\operatorname{tr}\left(\sum_{i=1}^{m} \mathbf{Z}_{i} \mathbf{Z}_{i}^{T}\right) \\
& =\sum_{i=1}^{m} \operatorname{tr}\left(\mathbf{Z}_{i} \mathbf{Z}_{i}^{T}\right) \\
& =\sum_{i=1}^{m} \operatorname{tr}\left(\mathbf{Z}_{i}^{T} \mathbf{Z}_{i}\right) \\
& =\sum_{i=1}^{m} \mathbf{Z}_{i}^{T} \mathbf{Z}_{i} .
\end{aligned}
$$

- Recall that $\mathbf{Z}_{i}^{T} \mathbf{Z}_{i} \sim \chi^{2}(p)$.

Example iif

- Therefore $\operatorname{tr}(S)$ is the sum of m independent copies of a $\chi^{2}(p)$, and so we have

$$
\operatorname{tr}(S) \sim \chi^{2}(m p)
$$

B <- 1000
n <- 10; p <- 4
traces <- replicate(B, \{
Z <- matrix (rnorm ($n * p$), ncol = p)
W <- crossprod(Z)
sum(diag(W))
\})

Example iv

hist (traces, 50, freq = FALSE)
lines(density(rchisq(B, $d f=n * p))$)

Example

Histogram of traces

Non-singular Wishart distribution

- As defined above, there is no guarantee that a Wishart variate is invertible.
- To show: if $S \sim W_{p}(m, \Sigma)$ with Σ positive definite, S is invertible almost surely whenever $m \geq p$.

Lemma: Let Z be an $n \times n$ random matrix where the entries $Z_{i j}$ are iid $N(0,1)$. Then $P(\operatorname{det} Z=0)=0$.

Proof: We will prove this by induction on n. If $n=1$, then the result hold since $N(0,1)$ is absolutely continuous.

Now let $n>1$ and assume the result holds for $n-1$. Write

Non-singular Wishart distribution if

$$
Z=\left(\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right)
$$

where Z_{22} is $(n-1) \times(n-1)$. Note that by assumption, we have $\operatorname{det} Z_{22} \neq 0$ almost surely. Now, by the Schur determinant formula, we have

$$
\begin{aligned}
\operatorname{det} Z & =\operatorname{det} Z_{22} \operatorname{det}\left(Z_{11}-Z_{12} Z_{22}^{-1} Z_{21}\right) \\
& =\left(\operatorname{det} Z_{22}\right)\left(Z_{11}-Z_{12} Z_{22}^{-1} Z_{21}\right)
\end{aligned}
$$

Non-singular Wishart distribution iif

We now have

$$
\begin{aligned}
P(|Z|=0) & =P\left(|Z|=0,\left|Z_{22}\right| \neq 0\right)+P\left(|Z|=0,\left|Z_{22}\right|=0\right) \\
& =P\left(|Z|=0,\left|Z_{22}\right| \neq 0\right) \\
& =P\left(Z_{11}=Z_{12} Z_{22}^{-1} Z_{21},\left|Z_{22}\right| \neq 0\right) \\
& =E\left(P\left(Z_{11}=Z_{12} Z_{22}^{-1} Z_{21},\left|Z_{22}\right| \neq 0 \mid Z_{12}, Z_{22}, Z_{21}\right)\right) \\
& =E(0) \\
& =0
\end{aligned}
$$

Non-singular Wishart distribution iv

where we used the laws of total probability (Line 1) and total expectation (Line 4). Therefore, the result follows from induction.

We are now ready to prove the main result: let $S \sim W_{p}(m, \Sigma)$ with $\operatorname{det} \Sigma \neq 0$, and write $S=\sum_{i=1}^{m} \mathbf{Y}_{i} \mathbf{Y}_{i}^{T}$, with $\mathbf{Y}_{i} \sim N_{p}(0, \Sigma)$. If we let \mathbb{Y} be the $m \times p$ matrix whose i-th row is \mathbf{Y}_{i}. Then

$$
S=\sum_{i=1}^{m} \mathbf{Y}_{i} \mathbf{Y}_{i}^{T}=\mathbb{Y}^{T} \mathbb{Y}
$$

Non-singular Wishart distribution

Now note that

$$
\operatorname{rank}(S)=\operatorname{rank}\left(\mathbb{Y}^{T} \mathbb{Y}\right)=\operatorname{rank}(\mathbb{Y})
$$

Furthermore, if we write $\Sigma=L L^{T}$ using the Cholesky decomposition, then we can write

$$
\mathbb{Z}=\mathbb{Y}\left(L^{-1}\right)^{T}
$$

where the rows \mathbf{Z}_{i} of \mathbb{Z} are $N_{p}\left(0, I_{p}\right)$ and $\operatorname{rank}(\mathbb{Z})=\operatorname{rank}(\mathbb{Y})$.
Finally, we have

Non-singular Wishart distribution vi

$$
\begin{aligned}
\operatorname{rank}(S) & =\operatorname{rank}(\mathbb{Z}) \\
& \geq \operatorname{rank}\left(\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{p}\right) \\
& =p \quad(\text { a.s. })
\end{aligned}
$$

where the last equality follows from our Lemma. Since $\operatorname{rank}(S)=p$ almost surely, it is invertible almost surely.

Definition

If $S \sim W_{p}(m, \Sigma)$ with Σ positive definite and $m \geq p$, we say that S follows a nonsingular Wishart distribution. Otherwise, we say it follows a singular Wishart distribution.

Additional properties i

Let $S \sim W_{p}(m, \Sigma)$.

- We have $E(S)=m \Sigma$.
- If B is a $q \times p$ matrix, we have

$$
B S B^{T} \sim W_{p}\left(m, B \Sigma B^{T}\right)
$$

- If $T \sim W_{p}(n, \Sigma)$, then

$$
S+T \sim W_{p}(m+n, \Sigma)
$$

Additional properties ii

Now assume we can partition S and Σ as such:

$$
S=\left(\begin{array}{cc}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right), \quad \Sigma=\left(\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

with $S_{i i}$ and $\Sigma_{i i}$ of dimension $p_{i} \times p_{i}$. We then have

- $S_{i i} \sim W_{p_{i}}\left(m, \Sigma_{i i}\right)$
- If $\Sigma_{12}=0$, then S_{11} and S_{22} are independent.

Characteristic function i

- The definition of characteristic function can be extended to random matrices:
- Let S be a $p \times p$ random matrix. The characteristic function of S evaluated at a $p \times p$ symmetric matrix T is defined as

$$
\varphi_{S}(T)=E(\exp (i \operatorname{tr}(T S)))
$$

- We will show that if $S \sim W_{p}(m, \Sigma)$, then

$$
\varphi_{S}(T)=\left|I_{p}-2 i \Sigma T\right|^{-m / 2}
$$

- First, we will use the Cholesky decomposition $\Sigma=L L^{T}$.

Characteristic function if

- Next, we can write

$$
S=L\left(\sum_{j=1}^{m} \mathbf{Z}_{j} \mathbf{Z}_{j}^{T}\right) L^{T}
$$

where $\mathbf{Z}_{j} \sim N_{p}\left(0, I_{p}\right)$.

- Now, fix a symmetric matrix T. The matrix $L^{T} T L$ is also symmetric, and therefore we can compute its spectral decomposition:

$$
L^{T} T L=U \Lambda U^{T}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ is diagonal and $U U^{T}=I_{p}$.

Characteristic function iif

- We can now write

Characteristic function iv

$$
\begin{aligned}
\operatorname{tr}(T S) & =\operatorname{tr}\left(T L\left(\sum_{j=1}^{m} \mathbf{Z}_{j} \mathbf{Z}_{j}^{T}\right) L^{T}\right) \\
& =\operatorname{tr}\left(U \Lambda U^{T}\left(\sum_{j=1}^{m} \mathbf{Z}_{j} \mathbf{Z}_{j}^{T}\right)\right) \\
& =\operatorname{tr}\left(\Lambda U^{T}\left(\sum_{j=1}^{m} \mathbf{Z}_{j} \mathbf{Z}_{j}^{T}\right) U\right) \\
& =\operatorname{tr}\left(\Lambda\left(\sum_{j=1}^{m}\left(U^{T} \mathbf{Z}_{j}\right)\left(U^{T} \mathbf{Z}_{j}\right)^{T}\right)\right) .
\end{aligned}
$$

Characteristic function

- Two key observations:
- $U^{T} \mathbf{Z}_{j} \sim N_{p}\left(0, I_{p}\right)$;
- $\operatorname{tr}\left(\Lambda \mathbf{Z}_{j} \mathbf{Z}_{j}^{T}\right)=\sum_{k=1}^{p} \lambda_{k} Z_{j k}^{2}$.
- Putting all this together, we get

$$
\begin{aligned}
E(\exp (i \operatorname{tr}(T S))) & =E\left(\exp \left(i \sum_{j=1}^{m} \sum_{k=1}^{p} \lambda_{k} Z_{j k}^{2}\right)\right) \\
& =\prod_{j=1}^{m} \prod_{k=1}^{p} E\left(\exp \left(i \lambda_{k} Z_{j k}^{2}\right)\right)
\end{aligned}
$$

Characteristic function vi

- But $Z_{j k}^{2} \sim \chi^{2}(1)$, and so we have

$$
\varphi_{S}(T)=\prod_{j=1}^{m} \prod_{k=1}^{p} \varphi_{\chi^{2}(1)}\left(\lambda_{k}\right)
$$

- Recall that $\varphi_{\chi^{2}(1)}(t)=(1-2 i t)^{-1 / 2}$, and therefore we have

$$
\varphi_{S}(T)=\prod_{j=1}^{m} \prod_{k=1}^{p}\left(1-2 i \lambda_{k}\right)^{-1 / 2}
$$

Characteristic function vii

- Since $\prod_{k=1}^{p}\left(1-2 i \lambda_{k}\right)^{-1 / 2}=\left|I_{p}-2 i \Lambda\right|^{-1 / 2}$, we then have

$$
\begin{aligned}
\varphi_{S}(T) & =\prod_{j=1}^{m}\left|I_{p}-2 i \Lambda\right|^{-1 / 2} \\
& =\left|I_{p}-2 i \Lambda\right|^{-m / 2} \\
& =\left|I_{p}-2 i U \Lambda U^{T}\right|^{-m / 2} \\
& =\left|I_{p}-2 i L^{T} T L\right|^{-m / 2} \\
& =\left|I_{p}-2 i \Sigma T\right|^{-m / 2}
\end{aligned}
$$

Density of Wishart distribution

- Let $S \sim W_{p}(m, \Sigma)$ with Σ positive definite and $m \geq p$.

The density of S is given by

$$
f(S)=\frac{1}{2^{p m / 2} \Gamma_{p}\left(\frac{m}{2}\right)|\Sigma|^{m / 2}} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} S\right)\right)|S|^{(m-p-1) / 2}
$$

where

$$
\Gamma_{p}(u)=\pi^{p(p-1) / 4} \prod_{i=0}^{p-1} \Gamma\left(u-\frac{i}{2}\right), \quad u>\frac{1}{2}(p-1) .
$$

- Proof: Compute the characteristic function using the expression for the density and check that we obtain the same result as before (Exercise).

Sampling distribution of sample covariance

- We are now ready to prove the results we stated a few lectures ago.
- Recall again the univariate case:
- $\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$;
- \bar{X} and s^{2} are independent.
- In the multivariate case, we want to prove:
- $(n-1) S_{n} \sim W_{p}(n-1, \Sigma)$;
- $\overline{\mathbf{Y}}$ and S_{n} are independent.
- We will show that using the multivariate Cochran theorem

Cochran theorem

Let $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$ be a random sample with $\mathbf{Y}_{i} \sim N_{p}(0, \Sigma)$, and write \mathbb{Y} for the $n \times p$ matrix whose i-th row is \mathbf{Y}_{i}. Let A, B be $n \times n$ symmetric matrices, and let C be a $q \times n$ matrix of rank q. Then

1. $\mathbb{Y}^{T} A \mathbb{Y} \sim W_{p}(m, \Sigma)$ if and only if $A^{2}=A$ and $\operatorname{tr} A=m$.
2. $\mathbb{Y}^{T} A \mathbb{Y}$ and $\mathbb{Y}^{T} B \mathbb{Y}$ are independent if and only if $A B=0$.
3. $\mathbb{Y}^{T} A \mathbb{Y}$ and $C \mathbb{Y}$ are independent if and only if $C A=0$.

Application i

- Let $C=\frac{1}{n} \mathbf{1}^{T}$, where $\mathbf{1}$ is the n-dimensional vector of ones.
- Let $A=I_{n}-\frac{1}{n} 11^{T}$.
- Then we have

$$
\mathbb{Y}^{T} A \mathbb{Y}=(n-1) S_{n}, \quad C \mathbb{Y}=\overline{\mathbf{Y}}^{T}
$$

- We need to check the conditions of Cochran's theorem:
- $A^{2}=A$;
- $C A=0$;
- $\operatorname{tr} A=n-1$.

Application ii

- Using Parts 1. and 3. of the theorem, we can conclude that
- $(n-1) S_{n} \sim W_{p}(n-1, \Sigma)$;
- $\overline{\mathbf{Y}}$ and S_{n} are independent.

Proof (Cochran theorem)

Note 1: We typically only use one direction (\Leftarrow).
Note 2: We will only prove the first part.

- Since A is symmetric, we can compute its spectral decomposition as usual:

$$
A=U \Lambda U^{T} .
$$

- By assuming $A^{2}=A$, we are forcing the same condition on the eigenvalues:

$$
\Lambda^{2}=\Lambda .
$$

- But only two real numbers are possible $\lambda_{i} \in\{0,1\}$.

Proof (Cochran theorem) if

- Given that $\operatorname{tr} A=m$, and after perhaps reordering the eigenvalues, we have

$$
\lambda_{1}=\cdots=\lambda_{m}=1, \quad \lambda_{m-1}=\cdots=\lambda_{n}=0
$$

- Now, set $\mathbb{Z}=U^{T} \mathbb{Y}$, and let \mathbb{Z}_{i} be the i-th row of \mathbb{Z}. We have

$$
\begin{aligned}
\operatorname{Cov}(\mathbb{Z}) & =E\left(\left(U^{T} \mathbb{Y}\right)^{T}\left(U^{T} \mathbb{Y}\right)\right) \\
& =E\left(\mathbb{Y}^{T} U U^{T} \mathbb{Y}\right) \\
& =E\left(\mathbb{Y}^{T} \mathbb{Y}\right) \\
& =\operatorname{Cov}(\mathbb{Y})
\end{aligned}
$$

Proof (Cochran theorem) ifi

- Therefore, the covariance structures of \mathbb{Y} and \mathbb{Z} are the same:
- The vectors $\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{n}$ are still independent.
- $\mathbf{Z}_{i} \sim N_{p}(0, \Sigma)$.
- We can now write

$$
\begin{aligned}
\mathbb{Y}^{T} A \mathbb{Y} & =\mathbb{Y}^{T} U \Lambda U^{T} \mathbb{Y} \\
& =\mathbb{Z}^{T} \Lambda \mathbb{Z} \\
& =\sum_{i=1}^{m} \mathbf{Z}_{i} \mathbf{Z}_{i}^{T}
\end{aligned}
$$

- Therefore, we conlude that $\mathbb{Y}^{T} A \mathbb{Y} \sim W_{p}(m, \Sigma)$.

Bartlett decomposition

- Recall that the Wishart distribution is a distribution on the set of positive semi-definite matrices.
- This implies symmetry and a non-negative eigenvalues.
- These constraints are natural for covariance matrices, but it forces dependence between the entries that can make computations difficult.
- The Bartlett decomposition is a reparametrization of the Wishart distribution in terms of $p(p+1) / 2$ independent entries.
- You can think of it as a stochastic version of the Cholesky decomposition.

Bartlett decomposition if

- Let $S \sim W_{p}(m, \Sigma)$, where $m \geq p$ and Σ is positive definite, and write $S=L L^{T}$ using the Cholesky decomposition. Then the density of L is given by

$$
f(L)=\frac{2^{p}}{K} \prod_{i=1}^{p} \ell_{i i}^{m-i} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} L L^{T}\right)\right)
$$

where $K=2^{m p / 2}|\Sigma| \Gamma_{p}(m / 2)$ and $\ell_{i j}$ is the (i, j)-th entry of L.

- This result will follow from the formula for the density after a transformation.
- Recall that the density of S is:

$$
f(S)=\frac{1}{K} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} S\right)\right)|S|^{(m-p-1) / 2}
$$

- Note that we have

$$
\begin{aligned}
\operatorname{tr}\left(\Sigma^{-1} S\right) & =\operatorname{tr}\left(\Sigma^{-1} L L^{T}\right) \\
|S| & =\left|L L^{T}\right|=|L|^{2}=\prod_{i=1}^{p} \ell_{i i}^{2}
\end{aligned}
$$

Proof if

- Putting all this together, we have

$$
\begin{aligned}
f\left(L L^{T}\right) & =\frac{1}{K} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} S\right)\right)|S|^{(m-p-1) / 2} \\
& =\frac{1}{K} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} L L^{T}\right)\right) \prod_{i=1}^{p} \ell_{i i}^{m-p-1} .
\end{aligned}
$$

- To get the density of L, we need to multiply by the Jacobian of the inverse transformation $L \mapsto L L^{T}$.

Proof iif

- A simple yet tedious computation (see for example Theorem 2.1.9 in Muirhead) gives:

$$
|J|=2^{p} \prod_{i=1}^{p} \ell_{i i}^{p-i+1} .
$$

- Finally, we get the expression we wanted:

$$
\begin{aligned}
f(L) & =\frac{2^{p} \prod_{i=1}^{p} \ell_{i i}^{p-i+1}}{K} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} L L^{T}\right)\right) \prod_{i=1}^{p} \ell_{i i}^{m-p-1} \\
& =\frac{2^{p}}{K} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} L L^{T}\right)\right) \prod_{i=1}^{p} \ell_{i i}^{m-i} .
\end{aligned}
$$

Corollary i

If $\Sigma=I_{p}$, the elements $\ell_{i j}$ are all independent, and they follow the following distributions:

$$
\begin{aligned}
& \ell_{i i}^{2} \sim \chi^{2}(m-i+1), \\
& \ell_{i j} \sim N(0,1), \quad i>j .
\end{aligned}
$$

Proof:

- When $\Sigma=I_{p}$, the expression for $\operatorname{tr}\left(\Sigma^{-1} L L^{T}\right)$ simplifies:

$$
\operatorname{tr}\left(\Sigma^{-1} L L^{T}\right)=\operatorname{tr}\left(L L^{T}\right)=\sum_{i \geq j} \ell_{i j}^{2} .
$$

Corollary if

- This allows us to rewrite the density $f(L)$ (up to a constant):

$$
\begin{aligned}
f(L) & \propto \exp \left(-\frac{1}{2} \operatorname{tr}\left(L L^{T}\right)\right) \prod_{i=1}^{p} \ell_{i i}^{m-i} \\
& =\exp \left(-\frac{1}{2} \sum_{i \geq j} \ell_{i j}^{2}\right) \prod_{i=1}^{p} \ell_{i i}^{m-i} \\
& =\left\{\prod_{i>j} \exp \left(-\frac{1}{2} \ell_{i j}^{2}\right)\right\}\left\{\prod_{i=1}^{p} \exp \left(-\frac{1}{2} \ell_{i i}^{2}\right) \ell_{i i}^{m-i}\right\}
\end{aligned}
$$

Corollary iif

which is the product of the marginals we wanted.

Example i

$$
\begin{aligned}
& \mathrm{B}<-1000 \\
& \mathrm{n}<-10 \\
& \mathrm{p}<-5
\end{aligned}
$$

bartlett <- replicate(B, \{

$$
\mathrm{X}<-\operatorname{matrix}(\operatorname{rnorm}(\mathrm{n} * \mathrm{p}), \mathrm{ncol}=\mathrm{p})
$$

L <- chol(crossprod(X))
\})
dim(bartlett)

Example if

\#\# [1] 5 5 1000
library(tidyverse)
\# Extract and plot diagonal~2
diagonal <- purrr::map_df(seq_len(B), function(i) \{ tmp <- diag(bartlett[, ,i])~2
data.frame(matrix(tmp, nrow = 1))
\})

Example iif

```
# Put into long format
diag_plot <- gather(diagonal, Entry, Value)
# Add chi-square means
diag_means <- data.frame(
    Entry = paste0("X", seq_len(p)),
    mean = n - seq_len(p) + 1
)
```


Example iv

$$
\begin{gathered}
\text { ggplot(diag_plot, aes(Value, fill = Entry)) + } \\
\text { geom_density(alpha }=0.2)+ \\
\text { theme_minimal }()+ \\
\text { geom_vline(data = diag_means, } \\
\text { aes(xintercept }=\text { mean, } \\
\text { colour = Entry), } \\
\text { linetype }=\text { 'dashed') }
\end{gathered}
$$

Example

Example vi

```
# Extract and plot off-diagonal
off_diagonal <- purrr::map_df(seq_len(B), function(i)
    tmp <- bartlett[,,i][upper.tri(bartlett[,,i])]
    data.frame(matrix(tmp, nrow = 1))
})
dim(off_diagonal)
```

\#\# [1] 100010

Example vif

\# Put into long format
offdiag_plot <- gather (off_diagonal, Entry, Value)
ggplot(offdiag_plot, aes(Value, group = Entry)) + geom_density (fill = NA) +
theme_minimal()

Example vifi

Distribution of the Generalized Variance

- As an application of the Bartlett decomposition, we will look at the distribution of the generalized variance:

$$
G V(S)=|S|, \quad S \sim W_{p}(m, \Sigma)
$$

- Theorem: If $S \sim W_{p}(m, \Sigma)$ with $m \geq p$ and Σ positive definite, then the ratio

$$
G V(S) / G V(\Sigma)=|S| /|\Sigma|
$$

follows the same distribution as a product of chi-square distributions:

$$
\prod_{i=1}^{p} \chi^{2}(m-i+1)
$$

Distribution of the Generalized Variance ii

Proof:

- First, we have

$$
\frac{|S|}{|\Sigma|}=|S|\left|\Sigma^{-1}\right|=\left|\Sigma^{-1 / 2}\right||S|\left|\Sigma^{-1 / 2}\right|=\left|\Sigma^{-1 / 2} S \Sigma^{-1 / 2}\right|
$$

- Moreover, we have that $\Sigma^{-1 / 2} S \Sigma^{-1 / 2} \sim W_{p}\left(m, I_{p}\right)$, so we can use the result of the Corollary above.
- If we write $\Sigma^{-1 / 2} S \Sigma^{-1 / 2}=L L^{T}$ using the Bartlett decomposition, we have

$$
\frac{|S|}{|\Sigma|}=\left|L L^{T}\right|=|L|^{2}=\prod_{i=1}^{p} \ell_{i i}^{2}
$$

Distribution of the Generalized Variance ifi

- Our result follows from the characterisation of the distribution of $\ell_{i i}^{2}$.
- Note: The distribution of $G V(S) / G V(\Sigma)$ does not depend on Σ.
- It is a pivotal quantity.
- Note 2: If S_{n} is the sample covariance, then $(n-1) S_{n} \sim W_{p}(n-1, \Sigma)$ and therefore

$$
(n-1)^{p} \frac{G V\left(S_{n}\right)}{G V(\Sigma)} \sim \prod_{i=1}^{p} \chi^{2}(n-i)
$$

Example

- We will use the Ramus dataset (see slides on Multivariate normal).
- We will construct a 95% confidence interval for the population generalized variance.
- Under a multivariate normality assumption, which probably doesn't hold...

Example if

$$
\begin{array}{r}
\text { var_names <- c("Age8", "Age8.5", } \\
\text { "Age9", "Age9.5") }
\end{array}
$$

dataset <- ramus[,var_names] dim(dataset)
\#\# [1] 204

Example iif

\# Sample covariance Sn <- cov(dataset)
\# Generalized variance $\operatorname{det}(\mathrm{Sn})$

\#\# [1] 1.068328

Example iv

```
# Simulate quantiles
set.seed(7200)
n <- nrow(dataset)
p <- ncol(dataset)
B <- 1000
simulated_vals <- replicate(B, {
    prod(rchisq(p, df = n - seq_len(p)))/((n-1)^p)
})
```


Example v

> bounds <- quantile(simulated_vals, \qquad probs $=c(0.025,0.975))$
bounds

```
\#\# \(2.5 \%\)
97.5\%
\#\# 0.14093022 .0241338
```


Example vi

\# 95\% Confidence interval (reverse bounds) $\operatorname{det}(\mathrm{Sn}) / \mathrm{rev}$ (bounds)

\#\# $97.5 \% \quad 2.5 \%$
\#\# 0.5277957 .580545

Visualization i

- Visualizing covariance/correlation matrices can be difficult, especially when the number of variables p increases.
- One possibility is a heatmap, that assign a colour to the individual coariances/correlations.
- Visualizing distributions of random matrices is even harder
- Already when $p=2$, this is a 3 -dimensional object...

Visualization ii

- One possibility is to decompose the distribution of a random matrix (or a sample thereof) into a series of univariate and bivariate graphical summaries. For example:
- Histograms of the covariances/correlations;
- Scatter plots for pairs of covariances;
- Histograms of traces and determinants.

Example i

\# Recall our covariance matrix for the Ramus dataset round (Sn, 2)

\#\#	Age8	Age8.5	Age9	Age9.5
\#\# Age8	6.33	6.19	5.78	5.55
\#\# Age8.5	6.19	6.45	6.15	5.92
\#\# Age9	5.78	6.15	6.92	6.95
\#\# Age9.5	5.55	5.92	6.95	7.46

Example if

> \# Visually we get
> lattice::levelplot(Sn, xlab = "", ylab = "")

Example iif

Example iv

\# Perhaps easier to interpret as correlations
\# But be careful with the scale!
lattice:: levelplot(cov2cor(Sn),
xlab = "", ylab = "")

Example

Example vi

Next, we will visualize the distribution of S_{n} using bootstrap.

B <- 1000
n <- nrow(dataset)
boot_covs <- lapply(seq_len(B), function(b) \{ data_boot <- dataset[sample(n, n, replace = TRUE),] return(cov(data_boot))
\})

Example vii

\# Extract the diagonal entries
diagonal <- purrr::map_df(boot_covs, function(Sn) \{ tmp <- diag (Sn)
data.frame(matrix(tmp, nrow = 1))
\})

Example viif

\# Put into long format
diag_plot <- gather(diagonal, Entry, Value)
ggplot(diag_plot, aes(Value, fill = Entry)) + geom_density (alpha $=0.2)$ +
theme_minimal()

Example ix

Example

\# Multivariate normal theory predicts
\# the diagonal entry should be scaled chi-square ggplot(diag_plot, aes(sample = Value)) + geom_qq(distribution = qchisq,
dparams = list(df = n - 1)) +
theme_minimal() + facet_wrap(~ Entry) + geom_qq_line(distribution = qchisq, dparams = list (df = $\mathrm{n}-1)$)

Example xi

Example xii

```
# Finally, let's look at pairwise scatterplots
# for off-diagonal entries
off_diag <- purrr::map_df(boot_covs, function(Sn) {
    tmp <- Sn[upper.tri(Sn)]
    data.frame(matrix(tmp, nrow = 1))
    })
```


Example xiii

> \# Add column names names(off_diag) <- c(paste0("8:", c("8.5","9","9.5")), $$
\begin{array}{l}\text { paste0("8.5:", c("9","9.5")), } \\ \\ \text { "9:9.5") }\end{array}
$$

GGally::ggpairs(off_diag)

Example xiv

Summary

- Wishart random matrices are sums of outer products of independent multivariate normal variables with the same scale matrix Σ.
- They allow us to give a description of the sample covariance matrices and its functionals:
- E.g. trace, generalized variance, etc.
- The Bartlett decomposition gives us a reparametrization of the Wishart distribution with independent constaints of the entries.
- Positive diagonal entries; contant zero above the diagonal; unconstrained below the diagonal.

